These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 25723623)
1. Kinetic characterization of Aspergillus niger chitinase CfcI using a HPAEC-PAD method for native chitin oligosaccharides. van Munster JM; Sanders P; ten Kate GA; Dijkhuizen L; van der Maarel MJ Carbohydr Res; 2015 Apr; 407():73-8. PubMed ID: 25723623 [TBL] [Abstract][Full Text] [Related]
2. Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. van Munster JM; van der Kaaij RM; Dijkhuizen L; van der Maarel MJEC Microbiology (Reading); 2012 Aug; 158(Pt 8):2168-2179. PubMed ID: 22575895 [TBL] [Abstract][Full Text] [Related]
3. Chitinases CtcB and CfcI modify the cell wall in sporulating aerial mycelium of Aspergillus niger. van Munster JM; Nitsche BM; Krijgsheld P; van Wijk A; Dijkhuizen L; Wösten HA; Ram AF; van der Maarel MJEC Microbiology (Reading); 2013 Sep; 159(Pt 9):1853-1867. PubMed ID: 23832003 [TBL] [Abstract][Full Text] [Related]
4. Unique GH18 chitinase from Euglena gracilis: full-length cDNA cloning and characterization of its catalytic domain. Taira T; Gushiken C; Sugata K; Ohnuma T; Fukamizo T Biosci Biotechnol Biochem; 2018 Jul; 82(7):1090-1100. PubMed ID: 29621939 [TBL] [Abstract][Full Text] [Related]
5. The Modes of Action of ChiIII, a Chitinase from Mushroom Coprinopsis cinerea, Shift with Changes in the Length of GlcNAc Oligomers. Niu X; Liu CC; Xiong YJ; Yang MM; Ma F; Liu ZH; Yuan S J Agric Food Chem; 2016 Sep; 64(37):6958-68. PubMed ID: 27573573 [TBL] [Abstract][Full Text] [Related]
6. Potent Fungal Chitinase for the Bioconversion of Mycelial Waste. Liu T; Han H; Wang D; Guo X; Zhou Y; Fukamizo T; Yang Q J Agric Food Chem; 2020 May; 68(19):5384-5390. PubMed ID: 32275147 [No Abstract] [Full Text] [Related]
7. Enhanced degradation of α-chitin materials prepared from shrimp processing byproduct and production of N-acetyl-D-glucosamine by thermoactive chitinases from soil mesophilic fungi. Suresh PV; Anil Kumar PK Biodegradation; 2012 Jul; 23(4):597-607. PubMed ID: 22270691 [TBL] [Abstract][Full Text] [Related]
8. Development of a two-enzyme system in Aspergillus niger for efficient production of N-acetyl-β-D-glucosamine from powdery chitin. Han S; Xue Y; Yan Q; Jiang Z; Yang S Bioresour Technol; 2024 Feb; 393():130024. PubMed ID: 37972902 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the First Fungal Glycosyl Hydrolase Family 19 Chitinase (NbchiA) from Nosema bombycis (Nb). Han B; Zhou K; Li Z; Sun B; Ni Q; Meng X; Pan G; Li C; Long M; Li T; Zhou C; Li W; Zhou Z J Eukaryot Microbiol; 2016; 63(1):37-45. PubMed ID: 26108336 [TBL] [Abstract][Full Text] [Related]
10. Carbohydrate-binding properties of goat secretory glycoprotein (SPG-40) and its functional implications: structures of the native glycoprotein and its four complexes with chitin-like oligosaccharides. Kumar J; Ethayathulla AS; Srivastava DB; Singh N; Sharma S; Kaur P; Srinivasan A; Singh TP Acta Crystallogr D Biol Crystallogr; 2007 Apr; 63(Pt 4):437-46. PubMed ID: 17372347 [TBL] [Abstract][Full Text] [Related]
11. Enzymatic properties of a GH19 chitinase isolated from rice lacking a major loop structure involved in chitin binding. Tanaka J; Fukamizo T; Ohnuma T Glycobiology; 2017 May; 27(5):477-485. PubMed ID: 28204489 [TBL] [Abstract][Full Text] [Related]
12. Enzymatic properties of wild-type and active site mutants of chitinase A from Vibrio carchariae, as revealed by HPLC-MS. Suginta W; Vongsuwan A; Songsiriritthigul C; Svasti J; Prinz H FEBS J; 2005 Jul; 272(13):3376-86. PubMed ID: 15978043 [TBL] [Abstract][Full Text] [Related]
14. Production of N-Acetyl-d-glucosamine from Mycelial Waste by a Combination of Bacterial Chitinases and an Insect N-Acetyl-d-glucosaminidase. Zhu W; Wang D; Liu T; Yang Q J Agric Food Chem; 2016 Sep; 64(35):6738-44. PubMed ID: 27546481 [TBL] [Abstract][Full Text] [Related]
15. Structural basis of chitin oligosaccharide deacetylation. Andrés E; Albesa-Jové D; Biarnés X; Moerschbacher BM; Guerin ME; Planas A Angew Chem Int Ed Engl; 2014 Jul; 53(27):6882-7. PubMed ID: 24810719 [TBL] [Abstract][Full Text] [Related]
16. Heterologous Expression and Characterization of a Novel Chitinase (ChiEn1) from Coprinopsis cinerea and its Synergism in the Degradation of Chitin. Niu X; Zhou JS; Wang YX; Liu CC; Liu ZH; Yuan S J Agric Food Chem; 2017 Aug; 65(32):6943-6956. PubMed ID: 28721730 [TBL] [Abstract][Full Text] [Related]
17. Characterization of an exochitinase from Epiphyas postvittana nucleopolyhedrovirus (family Baculoviridae). Young VL; Simpson RM; Ward VK J Gen Virol; 2005 Dec; 86(Pt 12):3253-3261. PubMed ID: 16298970 [TBL] [Abstract][Full Text] [Related]
18. Aromatic residues within the substrate-binding cleft of Bacillus circulans chitinase A1 are essential for hydrolysis of crystalline chitin. Watanabe T; Ariga Y; Sato U; Toratani T; Hashimoto M; Nikaidou N; Kezuka Y; Nonaka T; Sugiyama J Biochem J; 2003 Nov; 376(Pt 1):237-44. PubMed ID: 12930197 [TBL] [Abstract][Full Text] [Related]
19. Structure and Enzymatic Properties of a Two-Domain Family GH19 Chitinase from Japanese Cedar ( Cryptomeria japonica) Pollen. Takashima T; Numata T; Taira T; Fukamizo T; Ohnuma T J Agric Food Chem; 2018 Jun; 66(22):5699-5706. PubMed ID: 29756783 [TBL] [Abstract][Full Text] [Related]
20. Preparation of chitooligosaccharides from fungal waste mycelium by recombinant chitinase. Lv M; Hu Y; Gänzle MG; Lin J; Wang C; Cai J Carbohydr Res; 2016 Jul; 430():1-7. PubMed ID: 27153004 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]