BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

334 related articles for article (PubMed ID: 25723711)

  • 1. One-pot, bioinspired coatings to reduce the flammability of flexible polyurethane foams.
    Davis R; Li YC; Gervasio M; Luu J; Kim YS
    ACS Appl Mater Interfaces; 2015 Mar; 7(11):6082-92. PubMed ID: 25723711
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid growing clay coatings to reduce the fire threat of furniture.
    Kim YS; Li YC; Pitts WM; Werrel M; Davis RD
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2146-52. PubMed ID: 24422757
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Oriented clay nanopaper from biobased components--mechanisms for superior fire protection properties.
    Carosio F; Kochumalayil J; Cuttica F; Camino G; Berglund L
    ACS Appl Mater Interfaces; 2015 Mar; 7(10):5847-56. PubMed ID: 25723913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Extreme Heat Shielding of Clay/Chitosan Nanobrick Wall on Flexible Foam.
    Lazar S; Carosio F; Davesne AL; Jimenez M; Bourbigot S; Grunlan J
    ACS Appl Mater Interfaces; 2018 Sep; 10(37):31686-31696. PubMed ID: 30148595
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of sustainable and highly efficient fire-protective nanocoatings based on polydopamine and phosphorylated cellulose for flexible polyurethane foam.
    Ye D; Wang C; Xi J; Li W; Wang J; Miao E; Xing W; Yu B
    Int J Biol Macromol; 2024 Jun; 272(Pt 1):132639. PubMed ID: 38834116
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioinspired, Highly Adhesive, Nanostructured Polymeric Coatings for Superhydrophobic Fire-Extinguishing Thermal Insulation Foam.
    Ma Z; Liu X; Xu X; Liu L; Yu B; Maluk C; Huang G; Wang H; Song P
    ACS Nano; 2021 Jul; 15(7):11667-11680. PubMed ID: 34170679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Engineering Sulfur-Containing Polymeric Fire-Retardant Coatings for Fire-Safe Rigid Polyurethane Foam.
    Fang Y; Ma Z; Wei D; Yu Y; Liu L; Shi Y; Gao J; Tang LC; Huang G; Song P
    Macromol Rapid Commun; 2024 Apr; ():e2400068. PubMed ID: 38593218
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synergistic effect of phytic acid and eggshell bio-fillers on the dual-phase fire-retardancy of intumescent coatings applied on cellulosic substrates.
    Tuble KAQ; Omisol CJM; Abilay GY; Tomon TRB; Aguinid BJM; Dumancas GG; Malaluan RM; Lubguban AA
    Chemosphere; 2024 Jun; 358():142226. PubMed ID: 38704039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface Flame-Retardant Systems of Rigid Polyurethane Foams: An Overview.
    Jiang Y; Yang H; Lin X; Xiang S; Feng X; Wan C
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37049021
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fire behavior of innovative alginate foams.
    Vincent T; Vincent C; Dumazert L; Otazaghine B; Sonnier R; Guibal E
    Carbohydr Polym; 2020 Dec; 250():116910. PubMed ID: 33049885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. MXene/chitosan nanocoating for flexible polyurethane foam towards remarkable fire hazards reductions.
    Lin B; Yuen ACY; Li A; Zhang Y; Chen TBY; Yu B; Lee EWM; Peng S; Yang W; Lu HD; Chan QN; Yeoh GH; Wang CH
    J Hazard Mater; 2020 Jan; 381():120952. PubMed ID: 31400715
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal conductivity and combustion properties of wheat gluten foams.
    Blomfeldt TO; Nilsson F; Holgate T; Xu J; Johansson E; Hedenqvist MS
    ACS Appl Mater Interfaces; 2012 Mar; 4(3):1629-35. PubMed ID: 22332837
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fire propagation performance of intumescent fire protective coatings using eggshells as a novel biofiller.
    Yew MC; Ramli Sulong NH; Yew MK; Amalina MA; Johan MR
    ScientificWorldJournal; 2014; 2014():805094. PubMed ID: 25136687
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flame retardants in UK furniture increase smoke toxicity more than they reduce fire growth rate.
    McKenna ST; Birtles R; Dickens K; Walker RG; Spearpoint MJ; Stec AA; Hull TR
    Chemosphere; 2018 Apr; 196():429-439. PubMed ID: 29324384
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hybrid films of chitosan, cellulose nanofibrils and boric acid: Flame retardancy, optical and thermo-mechanical properties.
    Uddin KMA; Ago M; Rojas OJ
    Carbohydr Polym; 2017 Dec; 177():13-21. PubMed ID: 28962751
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fully bio-based coating made from alginate, chitosan and hydroxyapatite for protecting flexible polyurethane foam from fire.
    Nabipour H; Wang X; Song L; Hu Y
    Carbohydr Polym; 2020 Oct; 246():116641. PubMed ID: 32747276
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanically Sustainable Starch-Based Flame-Retardant Coatings on Polyurethane Foams.
    Choi KW; Kim JW; Kwon TS; Kang SW; Song JI; Park YT
    Polymers (Basel); 2021 Apr; 13(8):. PubMed ID: 33920820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Durability of Flame-Retarded, Co-Extruded Profiles Based on High-Density Polyethylene and Wheat Straw Residues.
    Schirp A; Dannenberg J
    Molecules; 2021 May; 26(11):. PubMed ID: 34072122
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytic Acid-Iron/Laponite Coatings for Enhanced Flame Retardancy, Antidripping and Mechanical Properties of Flexible Polyurethane Foam.
    Jiang Q; Li P; Liu Y; Zhu P
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012407
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flame Retardant Paraffin-Based Shape-Stabilized Phase Change Material via Expandable Graphite-Based Flame-Retardant Coating.
    Xu L; Liu X; Yang R
    Molecules; 2020 May; 25(10):. PubMed ID: 32455823
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.