These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
112 related articles for article (PubMed ID: 2572380)
1. Comparative metabolism of benzo[f]quinoline by liver microsomes from brown bullheads and rats. Kandaswami C; Rutkowski JP; Kumar S; Sikka HC Comp Biochem Physiol C Comp Pharmacol Toxicol; 1989; 93(2):269-74. PubMed ID: 2572380 [TBL] [Abstract][Full Text] [Related]
2. Metabolism of phenanthrene by brown bullhead liver microsomes. Pangrekar J; Kole PL; Honey SA; Kumar S; Sikka HC Aquat Toxicol; 2003 Sep; 64(4):407-18. PubMed ID: 12878411 [TBL] [Abstract][Full Text] [Related]
3. Metabolism of chrysene by brown bullhead liver microsomes. Pangrekar J; Kole PL; Honey SA; Kumar S; Sikka HC Toxicol Sci; 2003 Jan; 71(1):67-73. PubMed ID: 12520076 [TBL] [Abstract][Full Text] [Related]
4. Metabolism of benzo[f]quinoline by rat liver microsomes. Kandaswami C; Kumar S; Dubey SK; Sikka HC Carcinogenesis; 1987 Dec; 8(12):1861-6. PubMed ID: 3677310 [TBL] [Abstract][Full Text] [Related]
5. Comparative metabolism of phenanthrene and benzo[f]quinoline by rat liver microsomes. Kandaswami C; Kumar S; Rutkowski JP; Sikka HC Cancer Lett; 1988 Dec; 43(3):197-205. PubMed ID: 3203337 [TBL] [Abstract][Full Text] [Related]
6. Metabolism of benzo[a]pyrene and persistence of DNA adducts in the brown bullhead (Ictalurus nebulosus). Sikka HC; Steward AR; Kandaswami C; Rutkowski JP; Zaleski J; Kumar S; Earley K; Gupta RC Comp Biochem Physiol C Comp Pharmacol Toxicol; 1991; 100(1-2):25-8. PubMed ID: 1677858 [TBL] [Abstract][Full Text] [Related]
7. Identification of the metabolites of benzo[f]quinoline and benzo[h]quinoline formed by rat liver homogenate. LaVoie EJ; Adams EA; Hoffmann D Carcinogenesis; 1983 Sep; 4(9):1133-8. PubMed ID: 6883636 [TBL] [Abstract][Full Text] [Related]
8. Formation and persistence of DNA adducts in the liver of brown bullheads exposed to benzo[a]pyrene. Sikka HC; Rutkowski JP; Kandaswami C; Kumar S; Earley K; Gupta RC Cancer Lett; 1990 Jan; 49(1):81-7. PubMed ID: 2105836 [TBL] [Abstract][Full Text] [Related]
9. Characterization of benzo[a]pyrene metabolites formed by 3-methylcholanthrene-induced goldfish, black bullhead and brown bullhead. Swain L; Melius P Comp Biochem Physiol C Comp Pharmacol Toxicol; 1984; 79(1):151-8. PubMed ID: 6149861 [TBL] [Abstract][Full Text] [Related]
10. Induction of glutathione S-transferase activity and protein expression in brown bullhead (Ameiurus nebulosus) liver by ethoxyquin. Henson KL; Stauffer G; Gallagher EP Toxicol Sci; 2001 Jul; 62(1):54-60. PubMed ID: 11399793 [TBL] [Abstract][Full Text] [Related]
11. Regioselectivity and stereoselectivity in the metabolism of trans-1,2-dihydroxy-1,2-dihydrobenz[a]anthracene by rat liver microsomes. Vyas KP; van Bladeren PJ; Thakker DR; Yagi H; Sayer JM; Levin W; Jerina DM Mol Pharmacol; 1983 Jul; 24(1):115-23. PubMed ID: 6865920 [TBL] [Abstract][Full Text] [Related]
12. Metabolism of alkoxyphenoxazones by channel catfish liver microsomes: effects of phenobarbital, Aroclor 1254 and 3-methylcholanthrene. Ankley GT; Reinert RE; Mayer RT; Burke MD; Agosin M Biochem Pharmacol; 1987 Apr; 36(8):1379-81. PubMed ID: 3109440 [No Abstract] [Full Text] [Related]
13. Metabolic activation of environmental carcinogens and mutagens by human liver microsomes. Role of cytochrome P-450 homologous to a 3-methylcholanthrene-inducible isozyme in rat liver. Shimada T; Okuda Y Biochem Pharmacol; 1988 Feb; 37(3):459-65. PubMed ID: 3337745 [TBL] [Abstract][Full Text] [Related]
14. Metabolism of the polynuclear sulfur heterocycle benzo[b]phenanthro[2,3-d]thiophene by rodent liver microsomes: evidence for multiple pathways in the bioactivation of benzo[b]phenanthro[2,3-d]thiophene. Yuan ZX; Sikka HC; Munir S; Kumar A; Muruganandam AV; Kumar S Chem Res Toxicol; 2003 Dec; 16(12):1581-8. PubMed ID: 14680372 [TBL] [Abstract][Full Text] [Related]
15. Metabolism of 6-methylbenz[a]anthracene by rat liver microsomes and mutagenicity of metabolites. Mushtaq M; Fu PP; Miller DW; Yang SK Cancer Res; 1985 Sep; 45(9):4006-14. PubMed ID: 3896475 [TBL] [Abstract][Full Text] [Related]
16. The effect of enzyme induction on the stereoselective metabolism of optically pure (-)1R,2R- and (+)1S,2S-dihydroxy-1,2-dihydrobenz-[a]anthracenes to vicinal 1,2-dihydrodiol 3,4-epoxides by rat liver microsomes. Chou MW; Chiu PL; Fu PP; Yang SK Carcinogenesis; 1983; 4(5):629-38. PubMed ID: 6850995 [TBL] [Abstract][Full Text] [Related]
17. Metabolism of mutagenicity-deprived 3-fluoroquinoline: comparison with mutagenic quinoline. Saeki K; Takahashi K; Kawazoe Y Biol Pharm Bull; 1993 Mar; 16(3):232-4. PubMed ID: 8364465 [TBL] [Abstract][Full Text] [Related]
18. Metabolism of benzo[c]phenanthrene by rat liver microsomes and by a purified monooxygenase system reconstituted with different isozymes of cytochrome P-450. Ittah Y; Thakker DR; Levin W; Croisy-Delcey M; Ryan DE; Thomas PE; Conney AH; Jerina DM Chem Biol Interact; 1983 Jul; 45(1):15-28. PubMed ID: 6872097 [TBL] [Abstract][Full Text] [Related]
19. Metabolic activation of 2-amino-3-methylimidazo(4,5-f)quinoline by hepatic preparations--contribution of the cytosolic fraction and its significance to strain differences. Abu-Shakra A; Ioannides C; Walker R Mutagenesis; 1986 Sep; 1(5):367-70. PubMed ID: 3331675 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome P450 species involved in the metabolism of quinoline. Reigh G; McMahon H; Ishizaki M; Ohara T; Shimane K; Esumi Y; Green C; Tyson C; Ninomiya S Carcinogenesis; 1996 Sep; 17(9):1989-96. PubMed ID: 8824525 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]