These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
405 related articles for article (PubMed ID: 25724135)
41. Cholesterol-PEG comodified poly (N-butyl) cyanoacrylate nanoparticles for brain delivery: in vitro and in vivo evaluations. Hu X; Yang F; Liao Y; Li L; Zhang L Drug Deliv; 2017 Nov; 24(1):121-132. PubMed ID: 28156159 [TBL] [Abstract][Full Text] [Related]
42. Multifunctional Composite Microcapsules for Oral Delivery of Insulin. Sun S; Liang N; Gong X; An W; Kawashima Y; Cui F; Yan P Int J Mol Sci; 2016 Dec; 18(1):. PubMed ID: 28036045 [TBL] [Abstract][Full Text] [Related]
43. The glucose-lowering potential of exendin-4 orally delivered via a pH-sensitive nanoparticle vehicle and effects on subsequent insulin secretion in vivo. Nguyen HN; Wey SP; Juang JH; Sonaje K; Ho YC; Chuang EY; Hsu CW; Yen TC; Lin KJ; Sung HW Biomaterials; 2011 Apr; 32(10):2673-82. PubMed ID: 21256586 [TBL] [Abstract][Full Text] [Related]
44. A comparative study of the potential of solid triglyceride nanostructures coated with chitosan or poly(ethylene glycol) as carriers for oral calcitonin delivery. Garcia-Fuentes M; Prego C; Torres D; Alonso MJ Eur J Pharm Sci; 2005 May; 25(1):133-43. PubMed ID: 15854809 [TBL] [Abstract][Full Text] [Related]
45. Biopharmaceutical characterisation of insulin and recombinant human growth hormone loaded lipid submicron particles produced by supercritical gas micro-atomisation. Salmaso S; Bersani S; Elvassore N; Bertucco A; Caliceti P Int J Pharm; 2009 Sep; 379(1):51-8. PubMed ID: 19545616 [TBL] [Abstract][Full Text] [Related]
46. Polymeric nanoparticles augment the ocular hypotensive effect of melatonin in rabbits. Musumeci T; Bucolo C; Carbone C; Pignatello R; Drago F; Puglisi G Int J Pharm; 2013 Jan; 440(2):135-40. PubMed ID: 23078856 [TBL] [Abstract][Full Text] [Related]
47. Charge-switchable zwitterionic polycarboxybetaine particle as an intestinal permeation enhancer for efficient oral insulin delivery. Li Y; Ji W; Peng H; Zhao R; Zhang T; Lu Z; Yang J; Liu R; Zhang X Theranostics; 2021; 11(9):4452-4466. PubMed ID: 33754071 [TBL] [Abstract][Full Text] [Related]
48. Intestinal mucosa permeability following oral insulin delivery using core shell corona nanolipoparticles. Li X; Guo S; Zhu C; Zhu Q; Gan Y; Rantanen J; Rahbek UL; Hovgaard L; Yang M Biomaterials; 2013 Dec; 34(37):9678-87. PubMed ID: 24016855 [TBL] [Abstract][Full Text] [Related]
49. Development of an M cell targeted nanocomposite system for effective oral protein delivery: preparation, in vitro and in vivo characterization. Song JG; Lee SH; Han HK J Nanobiotechnology; 2021 Jan; 19(1):15. PubMed ID: 33422063 [TBL] [Abstract][Full Text] [Related]
51. Design, characterisation, and bioefficiency of insulin-chitosan nanoparticles after stabilisation by freeze-drying or cross-linking. Diop M; Auberval N; Viciglio A; Langlois A; Bietiger W; Mura C; Peronet C; Bekel A; Julien David D; Zhao M; Pinget M; Jeandidier N; Vauthier C; Marchioni E; Frere Y; Sigrist S Int J Pharm; 2015 Aug; 491(1-2):402-8. PubMed ID: 26049075 [TBL] [Abstract][Full Text] [Related]
52. The drug encapsulation efficiency, in vitro drug release, cellular uptake and cytotoxicity of paclitaxel-loaded poly(lactide)-tocopheryl polyethylene glycol succinate nanoparticles. Zhang Z; Feng SS Biomaterials; 2006 Jul; 27(21):4025-33. PubMed ID: 16564085 [TBL] [Abstract][Full Text] [Related]
54. A Nanocomposite Vehicle Based on Metal-Organic Framework Nanoparticle Incorporated Biodegradable Microspheres for Enhanced Oral Insulin Delivery. Zhou Y; Liu L; Cao Y; Yu S; He C; Chen X ACS Appl Mater Interfaces; 2020 May; 12(20):22581-22592. PubMed ID: 32340452 [TBL] [Abstract][Full Text] [Related]
55. Effects of poly (lactic-co-glycolic acid) as a co-emulsifier on the preparation and hypoglycaemic activity of insulin-loaded solid lipid nanoparticles. Wang SL; Xie SY; Zhu LY; Wang FH; Zhou WZ IET Nanobiotechnol; 2009 Dec; 3(4):103-8. PubMed ID: 19895157 [TBL] [Abstract][Full Text] [Related]
56. Hydrophobic ion pairing of an insulin-sodium deoxycholate complex for oral delivery of insulin. Sun S; Liang N; Kawashima Y; Xia D; Cui F Int J Nanomedicine; 2011; 6():3049-56. PubMed ID: 22162661 [TBL] [Abstract][Full Text] [Related]
57. Poly(lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of Docetaxel. Feng SS; Mei L; Anitha P; Gan CW; Zhou W Biomaterials; 2009 Jul; 30(19):3297-306. PubMed ID: 19299012 [TBL] [Abstract][Full Text] [Related]
58. Marked effects of combined TPGS and PVA emulsifiers in the fabrication of etoposide-loaded PLGA-PEG nanoparticles: in vitro and in vivo evaluation. Saadati R; Dadashzadeh S Int J Pharm; 2014 Apr; 464(1-2):135-44. PubMed ID: 24451238 [TBL] [Abstract][Full Text] [Related]
59. A mPEG-PLGA-b-PLL copolymer carrier for adriamycin and siRNA delivery. Liu P; Yu H; Sun Y; Zhu M; Duan Y Biomaterials; 2012 Jun; 33(17):4403-12. PubMed ID: 22436800 [TBL] [Abstract][Full Text] [Related]
60. Improved bioavailability of orally delivered insulin using Eudragit-L30D coated PLGA microparticles. Naha PC; Kanchan V; Manna PK; Panda AK J Microencapsul; 2008 Jun; 25(4):248-56. PubMed ID: 18465311 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]