These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 25724312)

  • 21. Optimization of formulation and process parameters for the production of nanosuspension by wet media milling technique: effect of Vitamin E TPGS and nanocrystal particle size on oral absorption.
    Ghosh I; Schenck D; Bose S; Ruegger C
    Eur J Pharm Sci; 2012 Nov; 47(4):718-28. PubMed ID: 22940548
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Enhancement of Bioavailability of Non-nucleoside Reverse Transciptase Inhibitor Using Nanosponges.
    Rao MRP; Shirsath C
    AAPS PharmSciTech; 2017 Jul; 18(5):1728-1738. PubMed ID: 27757921
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Nanocrystallization by evaporative antisolvent technique for solubility and bioavailability enhancement of telmisartan.
    Bajaj A; Rao MR; Pardeshi A; Sali D
    AAPS PharmSciTech; 2012 Dec; 13(4):1331-40. PubMed ID: 23054986
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Formulation and process optimization of naproxen nanosuspensions stabilized by hydroxy propyl methyl cellulose.
    Mishra B; Sahoo J; Dixit PK
    Carbohydr Polym; 2015 Aug; 127():300-8. PubMed ID: 25965487
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Particle size tailoring of ursolic acid nanosuspensions for improved anticancer activity by controlled antisolvent precipitation.
    Wang Y; Song J; Chow SF; Chow AH; Zheng Y
    Int J Pharm; 2015 Oct; 494(1):479-89. PubMed ID: 26302857
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Organogel Nanoparticles as a New Way to Improve Oral Bioavailability of Poorly Soluble Compounds.
    Martin B; Garrait G; Beyssac E; Goudouneche D; Perez E; Franceschi S
    Pharm Res; 2020 May; 37(6):92. PubMed ID: 32394200
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fabrication of Nanosuspension Directly Loaded Fast-Dissolving Films for Enhanced Oral Bioavailability of Olmesartan Medoxomil: In Vitro Characterization and Pharmacokinetic Evaluation in Healthy Human Volunteers.
    Alsofany JM; Hamza MY; Abdelbary AA
    AAPS PharmSciTech; 2018 Jul; 19(5):2118-2132. PubMed ID: 29700766
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of amorphous curcumin nanosuspensions using β-lactoglobulin to enhance solubility, stability, and bioavailability.
    Aditya NP; Yang H; Kim S; Ko S
    Colloids Surf B Biointerfaces; 2015 Mar; 127():114-21. PubMed ID: 25660094
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Anti HIV nanoemulsion formulation: optimization and in vitro-in vivo evaluation.
    Kotta S; Khan AW; Ansari SH; Sharma RK; Ali J
    Int J Pharm; 2014 Feb; 462(1-2):129-34. PubMed ID: 24374067
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced oral bioavailability of efavirenz by solid lipid nanoparticles: in vitro drug release and pharmacokinetics studies.
    Gaur PK; Mishra S; Bajpai M; Mishra A
    Biomed Res Int; 2014; 2014():363404. PubMed ID: 24967360
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Nanoparticles of Lovastatin: Design, Optimization and in vivo Evaluation.
    Gaber DA
    Int J Nanomedicine; 2020; 15():4225-4236. PubMed ID: 32606674
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of particle size on oral absorption of carvedilol nanosuspensions: in vitro and in vivo evaluation.
    Liu D; Pan H; He F; Wang X; Li J; Yang X; Pan W
    Int J Nanomedicine; 2015; 10():6425-34. PubMed ID: 26508852
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Formulation, optimization and in vitro-in vivo evaluation of febuxostat nanosuspension.
    Ahuja BK; Jena SK; Paidi SK; Bagri S; Suresh S
    Int J Pharm; 2015 Jan; 478(2):540-52. PubMed ID: 25490182
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Formulation and Evaluation of Isradipine Nanosuspension and Exploring its Role as a Potential Anticancer Drug by Computational Approach.
    Mohapatra PK; Srivastava R; Varshney KK; Babu SH
    Anticancer Agents Med Chem; 2022; 22(10):1984-2001. PubMed ID: 34353274
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Preparation and characterization of betulin nanoparticles for oral hypoglycemic drug by antisolvent precipitation.
    Zhao X; Wang W; Zu Y; Zhang Y; Li Y; Sun W; Shan C; Ge Y
    Drug Deliv; 2014 Sep; 21(6):467-79. PubMed ID: 24479653
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of stabilizing agents on the development of myricetin nanosuspension and its characterization: an in vitro and in vivo evaluation.
    Hong C; Dang Y; Lin G; Yao Y; Li G; Ji G; Shen H; Xie Y
    Int J Pharm; 2014 Dec; 477(1-2):251-60. PubMed ID: 25445518
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Engineered nanoparticles of Efavirenz using methacrylate co-polymer (Eudragit-E100) and its biological effects in-vivo.
    Hari BNV; Narayanan N; Dhevendaran K; Ramyadevi D
    Mater Sci Eng C Mater Biol Appl; 2016 Oct; 67():522-532. PubMed ID: 27287151
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preparation of azithromycin nanosuspensions by reactive precipitation method.
    Hou CD; Wang JX; Le Y; Zou HK; Zhao H
    Drug Dev Ind Pharm; 2012 Jul; 38(7):848-54. PubMed ID: 22092042
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effect of critical process parameters of the high pressure homogenization technique on the critical quality attributes of flurbiprofen nanosuspensions.
    Oktay AN; Ilbasmis-Tamer S; Celebi N
    Pharm Dev Technol; 2019 Dec; 24(10):1278-1286. PubMed ID: 31535942
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Kaempferia parviflora Nanosuspension Formulation for Scalability and Improvement of Dissolution Profiles and Intestinal Absorption.
    Mekjaruskul C; Sripanidkulchai B
    AAPS PharmSciTech; 2020 Jan; 21(2):52. PubMed ID: 31900735
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.