These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
166 related articles for article (PubMed ID: 25724312)
41. Glabridin nanosuspension for enhanced skin penetration: formulation optimization, in vitro and in vivo evaluation. Wang WP; Hul J; Sui H; Zhao YS; Feng J; Liu C Pharmazie; 2016 May; 71(5):252-7. PubMed ID: 27348968 [TBL] [Abstract][Full Text] [Related]
42. Nanosuspension as an ophthalmic delivery system for certain glucocorticoid drugs. Kassem MA; Abdel Rahman AA; Ghorab MM; Ahmed MB; Khalil RM Int J Pharm; 2007 Aug; 340(1-2):126-33. PubMed ID: 17600645 [TBL] [Abstract][Full Text] [Related]
43. Potent dried drug nanosuspensions for oral bioavailability enhancement of poorly soluble drugs with pH-dependent solubility. Mou D; Chen H; Wan J; Xu H; Yang X Int J Pharm; 2011 Jul; 413(1-2):237-44. PubMed ID: 21540090 [TBL] [Abstract][Full Text] [Related]
44. A formulation strategy for gamma secretase inhibitor ELND006, a BCS class II compound: development of a nanosuspension formulation with improved oral bioavailability and reduced food effects in dogs. Quinn K; Gullapalli RP; Merisko-Liversidge E; Goldbach E; Wong A; Liversidge GG; Hoffman W; Sauer JM; Bullock J; Tonn G J Pharm Sci; 2012 Apr; 101(4):1462-74. PubMed ID: 22213574 [TBL] [Abstract][Full Text] [Related]
45. Food proteins as novel nanosuspension stabilizers for poorly water-soluble drugs. He W; Lu Y; Qi J; Chen L; Hu F; Wu W Int J Pharm; 2013 Jan; 441(1-2):269-78. PubMed ID: 23194889 [TBL] [Abstract][Full Text] [Related]
46. Enhance the dissolution rate and oral bioavailability of pranlukast by preparing nanosuspensions with high-pressure homogenizing method. Wang L; Hao Y; Liu N; Ma M; Yin Z; Zhang X Drug Dev Ind Pharm; 2012 Nov; 38(11):1381-9. PubMed ID: 22300415 [TBL] [Abstract][Full Text] [Related]
47. Exploring the Solvent-Anti-solvent Method of Nanosuspension for Enhanced Oral Bioavailability of Lovastatin. Patil AS; Hegde R; Gadad AP; Dandagi PM; Masareddy R; Bolmal U Turk J Pharm Sci; 2021 Oct; 18(5):541-549. PubMed ID: 34708645 [TBL] [Abstract][Full Text] [Related]
48. Nanosuspension coated multiparticulates for controlled delivery of albendazole. Rao MRP; Godbole RV; Borate SG; Mahajan S; Gangwal T Drug Dev Ind Pharm; 2021 Mar; 47(3):367-376. PubMed ID: 33492985 [TBL] [Abstract][Full Text] [Related]
49. A continuous and highly effective static mixing process for antisolvent precipitation of nanoparticles of poorly water-soluble drugs. Dong Y; Ng WK; Hu J; Shen S; Tan RB Int J Pharm; 2010 Feb; 386(1-2):256-61. PubMed ID: 19922777 [TBL] [Abstract][Full Text] [Related]
50. Mechanical activation of Efavirenz: the effects on the dissolution and inhibitory behavior. Cappelletto E; Firrito C; Pizzato M; Rebuffi L; Scardi P Pharm Dev Technol; 2018 Dec; 23(10):1128-1135. PubMed ID: 29688125 [TBL] [Abstract][Full Text] [Related]
51. A nanoparticulate drug-delivery system for 20(S)-protopanaxadiol: formulation, characterization, increased oral bioavailability and anti-tumor efficacy. Han M; Ma L; Yu X; Li Z; Guo Y; Wang X Drug Deliv; 2016 Sep; 23(7):2410-2418. PubMed ID: 25564965 [TBL] [Abstract][Full Text] [Related]
52. Nanosuspensions: a promising formulation for the new phospholipase A2 inhibitor PX-18. Pardeike J; Müller RH Int J Pharm; 2010 May; 391(1-2):322-9. PubMed ID: 20214969 [TBL] [Abstract][Full Text] [Related]
53. Particle size reduction for improvement of oral absorption of the poorly soluble drug UG558 in rats during early development. Sigfridsson K; Lundqvist AJ; Strimfors M Drug Dev Ind Pharm; 2009 Dec; 35(12):1479-86. PubMed ID: 19929207 [TBL] [Abstract][Full Text] [Related]
54. Risk assessment and QbD based optimization of an Eprosartan mesylate nanosuspension: In-vitro characterization, PAMPA and in-vivo assessment. Shekhawat P; Pokharkar V Int J Pharm; 2019 Aug; 567():118415. PubMed ID: 31175989 [TBL] [Abstract][Full Text] [Related]
56. Solution calorimetry as an alternative approach for dissolution testing of nanosuspensions. Kayaert P; Li B; Jimidar I; Rombaut P; Ahssini F; Van den Mooter G Eur J Pharm Biopharm; 2010 Nov; 76(3):507-13. PubMed ID: 20887787 [TBL] [Abstract][Full Text] [Related]
57. Development of a screening platform for the formulation of poorly water-soluble drugs as albumin-stabilized nanosuspensions using nab™ technology. Adick A; Hoheisel W; Schneid S; Hester S; Langer K Int J Pharm; 2024 Sep; 662():124491. PubMed ID: 39032872 [TBL] [Abstract][Full Text] [Related]
58. Fabrication of Stable Apigenin Nanosuspension with PEG 400 as Antisolvent for Enhancing the Solubility and Bioavailability. Xu R; Jiang C; Zhou L; Li B; Hu Y; Guo Y; Xiao X; Lu S AAPS PharmSciTech; 2021 Dec; 23(1):12. PubMed ID: 34881399 [TBL] [Abstract][Full Text] [Related]
59. Drug nanosuspensions: a ZIP tool between traditional and innovative pharmaceutical formulations. Leone F; Cavalli R Expert Opin Drug Deliv; 2015; 12(10):1607-25. PubMed ID: 25960000 [TBL] [Abstract][Full Text] [Related]
60. Spray drying of a poorly water-soluble drug nanosuspension for tablet preparation: formulation and process optimization with bioavailability evaluation. Sun W; Ni R; Zhang X; Li LC; Mao S Drug Dev Ind Pharm; 2015 Jun; 41(6):927-33. PubMed ID: 24785575 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]