BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 25724321)

  • 1. Exploring task-related variability in fMRI data using fluctuations in power spectrum of simultaneously acquired EEG.
    Labounek R; Lamoš M; Mareček R; Brázdil M; Jan J
    J Neurosci Methods; 2015 Apr; 245():125-36. PubMed ID: 25724321
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A predictive modeling approach to analyze data in EEG-fMRI experiments.
    Ferdowsi S; Sanei S; Abolghasemi V
    Int J Neural Syst; 2015 Feb; 25(1):1440008. PubMed ID: 25156697
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Recursive approach of EEG-segment-based principal component analysis substantially reduces cryogenic pump artifacts in simultaneous EEG-fMRI data.
    Kim HC; Yoo SS; Lee JH
    Neuroimage; 2015 Jan; 104():437-51. PubMed ID: 25284302
    [TBL] [Abstract][Full Text] [Related]  

  • 4. From EEG to BOLD: brain mapping and estimating transfer functions in simultaneous EEG-fMRI acquisitions.
    Sato JR; Rondinoni C; Sturzbecher M; de Araujo DB; Amaro E
    Neuroimage; 2010 May; 50(4):1416-26. PubMed ID: 20116435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Single-trial analysis of oddball event-related potentials in simultaneous EEG-fMRI.
    Bénar CG; Schön D; Grimault S; Nazarian B; Burle B; Roth M; Badier JM; Marquis P; Liegeois-Chauvel C; Anton JL
    Hum Brain Mapp; 2007 Jul; 28(7):602-13. PubMed ID: 17295312
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mapping (and modeling) physiological movements during EEG-fMRI recordings: the added value of the video acquired simultaneously.
    Ruggieri A; Vaudano AE; Benuzzi F; Serafini M; Gessaroli G; Farinelli V; Nichelli PF; Meletti S
    J Neurosci Methods; 2015 Jan; 239():223-37. PubMed ID: 25455344
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Improved mapping of interictal epileptiform discharges with EEG-fMRI and voxel-wise functional connectivity analysis.
    Liu JV; Kobylarz EJ; Darcey TM; Lu Z; Wu YC; Meng M; Jobst BC
    Epilepsia; 2014 Sep; 55(9):1380-8. PubMed ID: 25060924
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multiway Array Decomposition of EEG Spectrum: Implications of Its Stability for the Exploration of Large-Scale Brain Networks.
    Mareček R; Lamoš M; Labounek R; Bartoň M; Slavíček T; Mikl M; Rektor I; Brázdil M
    Neural Comput; 2017 Apr; 29(4):968-989. PubMed ID: 28095199
    [TBL] [Abstract][Full Text] [Related]  

  • 9. What can be found in scalp EEG spectrum beyond common frequency bands. EEG-fMRI study.
    Marecek R; Lamos M; Mikl M; Barton M; Fajkus J; Rektor ; Brazdil M
    J Neural Eng; 2016 Aug; 13(4):046026. PubMed ID: 27432759
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A new informed tensor factorization approach to EEG-fMRI fusion.
    Ferdowsi S; Abolghasemi V; Sanei S
    J Neurosci Methods; 2015 Oct; 254():27-35. PubMed ID: 26231620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Integrating EEG and fMRI in epilepsy.
    Formaggio E; Storti SF; Bertoldo A; Manganotti P; Fiaschi A; Toffolo GM
    Neuroimage; 2011 Feb; 54(4):2719-31. PubMed ID: 21109007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-trial EEG-informed fMRI analysis of emotional decision problems in hot executive function.
    Guo Q; Zhou T; Li W; Dong L; Wang S; Zou L
    Brain Behav; 2017 Jul; 7(7):e00728. PubMed ID: 28729935
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Single-trial P3 amplitude and latency informed event-related fMRI models yield different BOLD response patterns to a target detection task.
    Warbrick T; Mobascher A; Brinkmeyer J; Musso F; Richter N; Stoecker T; Fink GR; Shah NJ; Winterer G
    Neuroimage; 2009 Oct; 47(4):1532-44. PubMed ID: 19505583
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The BOLD correlates of the visual P1 and N1 in single-trial analysis of simultaneous EEG-fMRI recordings during a spatial detection task.
    Novitskiy N; Ramautar JR; Vanderperren K; De Vos M; Mennes M; Mijovic B; Vanrumste B; Stiers P; Van den Bergh B; Lagae L; Sunaert S; Van Huffel S; Wagemans J
    Neuroimage; 2011 Jan; 54(2):824-35. PubMed ID: 20869449
    [TBL] [Abstract][Full Text] [Related]  

  • 15. EEG default mode network in the human brain: spectral regional field powers.
    Chen AC; Feng W; Zhao H; Yin Y; Wang P
    Neuroimage; 2008 Jun; 41(2):561-74. PubMed ID: 18403217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelet analysis as a tool for investigating movement-related cortical oscillations in EEG-fMRI coregistration.
    Storti SF; Formaggio E; Beltramello A; Fiaschi A; Manganotti P
    Brain Topogr; 2010 Mar; 23(1):46-57. PubMed ID: 19921416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Attention to detail: why considering task demands is essential for single-trial analysis of BOLD correlates of the visual P1 and N1.
    Warbrick T; Arrubla J; Boers F; Neuner I; Shah NJ
    J Cogn Neurosci; 2014 Mar; 26(3):529-42. PubMed ID: 24047390
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortex-based inter-subject analysis of iEEG and fMRI data sets: application to sustained task-related BOLD and gamma responses.
    Esposito F; Singer N; Podlipsky I; Fried I; Hendler T; Goebel R
    Neuroimage; 2013 Feb; 66():457-68. PubMed ID: 23138047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simultaneous EEG-fMRI at ultra-high field: artifact prevention and safety assessment.
    Jorge J; Grouiller F; Ipek Ö; Stoermer R; Michel CM; Figueiredo P; van der Zwaag W; Gruetter R
    Neuroimage; 2015 Jan; 105():132-44. PubMed ID: 25449743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nicotine effects on brain function during a visual oddball task: a comparison between conventional and EEG-informed fMRI analysis.
    Warbrick T; Mobascher A; Brinkmeyer J; Musso F; Stoecker T; Shah NJ; Fink GR; Winterer G
    J Cogn Neurosci; 2012 Aug; 24(8):1682-94. PubMed ID: 22452559
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.