BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 25724444)

  • 1. RGD-mimetic poly(amidoamine) hydrogel for the fabrication of complex cell-laden micro constructs.
    Tocchio A; Martello F; Tamplenizza M; Rossi E; Gerges I; Milani P; Lenardi C
    Acta Biomater; 2015 May; 18():144-54. PubMed ID: 25724444
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Poly(amido-amine)-based hydrogels with tailored mechanical properties and degradation rates for tissue engineering.
    Martello F; Tocchio A; Tamplenizza M; Gerges I; Pistis V; Recenti R; Bortolin M; Del Fabbro M; Argentiere S; Milani P; Lenardi C
    Acta Biomater; 2014 Mar; 10(3):1206-15. PubMed ID: 24361426
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Biomimetic poly(ethylene glycol)-based hydrogels as scaffolds for inducing endothelial adhesion and capillary-like network formation.
    Zhu J; He P; Lin L; Jones DR; Marchant RE
    Biomacromolecules; 2012 Mar; 13(3):706-13. PubMed ID: 22296572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Injectable Polypeptide Hydrogel as Biomimetic Scaffolds with Tunable Bioactivity and Controllable Cell Adhesion.
    Xu Q; Zhang Z; Xiao C; He C; Chen X
    Biomacromolecules; 2017 Apr; 18(4):1411-1418. PubMed ID: 28292176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biomimetic hydrogel with tunable mechanical properties for vitreous substitutes.
    Santhanam S; Liang J; Struckhoff J; Hamilton PD; Ravi N
    Acta Biomater; 2016 Oct; 43():327-337. PubMed ID: 27481290
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A bio-inspired, microchanneled hydrogel with controlled spacing of cell adhesion ligands regulates 3D spatial organization of cells and tissue.
    Lee MK; Rich MH; Lee J; Kong H
    Biomaterials; 2015 Jul; 58():26-34. PubMed ID: 25941779
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomimetic poly(amidoamine) hydrogels as synthetic materials for cell culture.
    Jacchetti E; Emilitri E; Rodighiero S; Indrieri M; Gianfelice A; Lenardi C; PodestĂ  A; Ranucci E; Ferruti P; Milani P
    J Nanobiotechnology; 2008 Nov; 6():14. PubMed ID: 19014710
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A new three dimensional biomimetic hydrogel to deliver factors secreted by human mesenchymal stem cells in spinal cord injury.
    Caron I; Rossi F; Papa S; Aloe R; Sculco M; Mauri E; Sacchetti A; Erba E; Panini N; Parazzi V; Barilani M; Forloni G; Perale G; Lazzari L; Veglianese P
    Biomaterials; 2016 Jan; 75():135-147. PubMed ID: 26497428
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of large perfusable macroporous cell-laden hydrogel scaffolds using microbial transglutaminase.
    Chen PY; Yang KC; Wu CC; Yu JH; Lin FH; Sun JS
    Acta Biomater; 2014 Feb; 10(2):912-20. PubMed ID: 24262131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel agmatine-containing poly(amidoamine) hydrogels as scaffolds for tissue engineering.
    Ferruti P; Bianchi S; Ranucci E; Chiellini F; Piras AM
    Biomacromolecules; 2005; 6(4):2229-35. PubMed ID: 16004467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancement of the adhesion of fibroblasts by peptide containing an Arg-Gly-Asp sequence with poly(ethylene glycol) into a thermo-reversible hydrogel as a synthetic extracellular matrix.
    Park KH; Na K; Chung HM
    Biotechnol Lett; 2005 Feb; 27(4):227-31. PubMed ID: 15742141
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of perfusable 3D hepatic lobule-like constructs through assembly of multiple cell type laden hydrogel microstructures.
    Cui J; Wang H; Zheng Z; Shi Q; Sun T; Huang Q; Fukuda T
    Biofabrication; 2018 Dec; 11(1):015016. PubMed ID: 30523847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the dependency between rigidity and water uptake of a microfabricated hydrogel with the conformational rigidity of a polymer cross-linker.
    Schmidt JJ; Jeong JH; Chan V; Cha C; Baek K; Lai MH; Bashir R; Kong H
    Biomacromolecules; 2013 May; 14(5):1361-9. PubMed ID: 23517437
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of bioactive photocrosslinkable fibrous hydrogels.
    Stephens-Altus JS; Sundelacruz P; Rowland ML; West JL
    J Biomed Mater Res A; 2011 Aug; 98(2):167-76. PubMed ID: 21548066
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of RGD amount in dextran-based hydrogels for cell delivery.
    Riahi N; Liberelle B; Henry O; De Crescenzo G
    Carbohydr Polym; 2017 Apr; 161():219-227. PubMed ID: 28189232
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enzymatic conjugation of a bioactive peptide into an injectable hyaluronic acid-tyramine hydrogel system to promote the formation of functional vasculature.
    Wang LS; Lee F; Lim J; Du C; Wan AC; Lee SS; Kurisawa M
    Acta Biomater; 2014 Jun; 10(6):2539-50. PubMed ID: 24561710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Versatile click alginate hydrogels crosslinked via tetrazine-norbornene chemistry.
    Desai RM; Koshy ST; Hilderbrand SA; Mooney DJ; Joshi NS
    Biomaterials; 2015 May; 50():30-7. PubMed ID: 25736493
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Engineering Cellular Microenvironments with Photo- and Enzymatically Responsive Hydrogels: Toward Biomimetic 3D Cell Culture Models.
    Tam RY; Smith LJ; Shoichet MS
    Acc Chem Res; 2017 Apr; 50(4):703-713. PubMed ID: 28345876
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Three-dimensional synthetic niche components to control germ cell proliferation.
    Chu C; Schmidt JJ; Carnes K; Zhang Z; Kong HJ; Hofmann MC
    Tissue Eng Part A; 2009 Feb; 15(2):255-62. PubMed ID: 18816170
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attachment and spreading of fibroblasts on an RGD peptide-modified injectable hyaluronan hydrogel.
    Shu XZ; Ghosh K; Liu Y; Palumbo FS; Luo Y; Clark RA; Prestwich GD
    J Biomed Mater Res A; 2004 Feb; 68(2):365-75. PubMed ID: 14704979
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.