These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

81 related articles for article (PubMed ID: 25724549)

  • 1. Tracking a protein following dissociation from a protein-protein complex using a split SNAP-tag system.
    Mie M; Naoki T; Kobatake E
    Anal Biochem; 2015 May; 477():53-5. PubMed ID: 25724549
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of a Split SNAP-CLIP Double Labeling System for Tracking Proteins Following Dissociation from Protein-Protein Complexes in Living Cells.
    Mie M; Naoki T; Kobatake E
    Anal Chem; 2016 Aug; 88(16):8166-71. PubMed ID: 27448142
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of a split SNAP-tag protein complementation assay for visualization of protein-protein interactions in living cells.
    Mie M; Naoki T; Uchida K; Kobatake E
    Analyst; 2012 Oct; 137(20):4760-5. PubMed ID: 22910969
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An engineered protein tag for multiprotein labeling in living cells.
    Gautier A; Juillerat A; Heinis C; Corrêa IR; Kindermann M; Beaufils F; Johnsson K
    Chem Biol; 2008 Feb; 15(2):128-36. PubMed ID: 18291317
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Releasable SNAP-tag probes for studying endocytosis and recycling.
    Cole NB; Donaldson JG
    ACS Chem Biol; 2012 Mar; 7(3):464-9. PubMed ID: 22216966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measuring in vivo protein half-life.
    Bojkowska K; Santoni de Sio F; Barde I; Offner S; Verp S; Heinis C; Johnsson K; Trono D
    Chem Biol; 2011 Jun; 18(6):805-15. PubMed ID: 21700215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Evolution of SNAP-Tag Labels.
    Dreyer R; Pfukwa R; Barth S; Hunter R; Klumperman B
    Biomacromolecules; 2023 Feb; 24(2):517-530. PubMed ID: 36607253
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Capturing Cell-Cell Interactions via SNAP-tag and CLIP-tag Technology.
    Hoehnel S; Lutolf MP
    Bioconjug Chem; 2015 Aug; 26(8):1678-86. PubMed ID: 26079967
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SNAP display: in vitro protein evolution in microdroplets.
    Kaltenbach M; Hollfelder F
    Methods Mol Biol; 2012; 805():101-11. PubMed ID: 22094803
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chromophore-assisted laser inactivation of alpha- and gamma-tubulin SNAP-tag fusion proteins inside living cells.
    Keppler A; Ellenberg J
    ACS Chem Biol; 2009 Feb; 4(2):127-38. PubMed ID: 19191588
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Facile analysis of protein-protein interactions in living cells by enriched visualization of the p-body.
    Choi M; Baek J; Han SB; Cho S
    BMB Rep; 2018 Oct; 51(10):526-531. PubMed ID: 29898808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expanding the substrate selectivity of SNAP/CLIP-tagging of intracellular targets.
    Macias-Contreras M; Little KN; Zhu L
    Methods Enzymol; 2020; 638():233-257. PubMed ID: 32416915
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Benzylguanine thiol self-assembled monolayers for the immobilization of SNAP-tag proteins on microcontact-printed surface structures.
    Engin S; Trouillet V; Franz CM; Welle A; Bruns M; Wedlich D
    Langmuir; 2010 May; 26(9):6097-101. PubMed ID: 20369837
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bioconjugation of CdSe/ZnS nanoparticles with SNAP tagged proteins.
    Petershans A; Wedlich D; Fruk L
    Chem Commun (Camb); 2011 Oct; 47(38):10671-3. PubMed ID: 21887421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Highly activatable and environment-insensitive optical highlighters for selective spatiotemporal imaging of target proteins.
    Kobayashi T; Komatsu T; Kamiya M; Campos C; González-Gaitán M; Terai T; Hanaoka K; Nagano T; Urano Y
    J Am Chem Soc; 2012 Jul; 134(27):11153-60. PubMed ID: 22694089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Directed evolution of the suicide protein O⁶-alkylguanine-DNA alkyltransferase for increased reactivity results in an alkylated protein with exceptional stability.
    Mollwitz B; Brunk E; Schmitt S; Pojer F; Bannwarth M; Schiltz M; Rothlisberger U; Johnsson K
    Biochemistry; 2012 Feb; 51(5):986-94. PubMed ID: 22280500
    [TBL] [Abstract][Full Text] [Related]  

  • 17. SNAP-Tag-Reactive Lipid Anchors Enable Targeted and Spatiotemporally Controlled Localization of Proteins to Phospholipid Membranes.
    Rudd AK; Valls Cuevas JM; Devaraj NK
    J Am Chem Soc; 2015 Apr; 137(15):4884-7. PubMed ID: 25830488
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SNAP dendrimers: multivalent protein display on dendrimer-like DNA for directed evolution.
    Kaltenbach M; Stein V; Hollfelder F
    Chembiochem; 2011 Sep; 12(14):2208-16. PubMed ID: 21780273
    [TBL] [Abstract][Full Text] [Related]  

  • 19. SNAP-Tag Technology: A Promising Tool for Ex Vivo Immunophenotyping.
    Choudhary S; Barth S; Verma RS
    Mol Diagn Ther; 2017 Jun; 21(3):315-326. PubMed ID: 28164252
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Development of SNAP-tag-mediated live cell labeling as an alternative to GFP in Porphyromonas gingivalis.
    Nicolle O; Rouillon A; Guyodo H; Tamanai-Shacoori Z; Chandad F; Meuric V; Bonnaure-Mallet M
    FEMS Immunol Med Microbiol; 2010 Aug; 59(3):357-63. PubMed ID: 20482622
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.