These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 2572457)

  • 1. Short and long spacer sequences and other structural features of zinc binding sites in zinc enzymes.
    Vallee BL; Auld DS
    FEBS Lett; 1989 Oct; 257(1):138-40. PubMed ID: 2572457
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Active-site zinc ligands and activated H2O of zinc enzymes.
    Vallee BL; Auld DS
    Proc Natl Acad Sci U S A; 1990 Jan; 87(1):220-4. PubMed ID: 2104979
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Zinc coordination sphere in biochemical zinc sites.
    Auld DS
    Biometals; 2001; 14(3-4):271-313. PubMed ID: 11831461
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Upgrading and Validation of the AMBER Force Field for Histidine and Cysteine Zinc(II)-Binding Residues in Sites with Four Protein Ligands.
    Macchiagodena M; Pagliai M; Andreini C; Rosato A; Procacci P
    J Chem Inf Model; 2019 Sep; 59(9):3803-3816. PubMed ID: 31385702
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Histidine --> carboxamide ligand substitutions in the zinc binding site of carbonic anhydrase II alter metal coordination geometry but retain catalytic activity.
    Lesburg CA; Huang C; Christianson DW; Fierke CA
    Biochemistry; 1997 Dec; 36(50):15780-91. PubMed ID: 9398308
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Substitution of potential metal-coordinating amino acid residues in the zinc-binding site of endopeptidase-24.11.
    Le Moual H; Roques BP; Crine P; Boileau G
    FEBS Lett; 1993 Jun; 324(2):196-200. PubMed ID: 8099556
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Zn(II) binding and DNA binding properties of ligand-substituted CXHH-type zinc finger proteins.
    Imanishi M; Matsumura K; Tsuji S; Nakaya T; Negi S; Futaki S; Sugiura Y
    Biochemistry; 2012 Apr; 51(16):3342-8. PubMed ID: 22482427
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The carboxylate shift in zinc enzymes: a computational study.
    Sousa SF; Fernandes PA; Ramos MJ
    J Am Chem Soc; 2007 Feb; 129(5):1378-85. PubMed ID: 17263422
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Analysis of zinc binding sites in protein crystal structures.
    Alberts IL; Nadassy K; Wodak SJ
    Protein Sci; 1998 Aug; 7(8):1700-16. PubMed ID: 10082367
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physical basis of structural and catalytic Zn-binding sites in proteins.
    Lee YM; Lim C
    J Mol Biol; 2008 Jun; 379(3):545-53. PubMed ID: 18462757
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histidine residues of zinc ligands in beta-lactamase II.
    Baldwin GS; Galdes A; Hill HA; Smith BE; Waley SG; Abraham EP
    Biochem J; 1978 Nov; 175(2):441-7. PubMed ID: 33655
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Zn(2+) binding properties of single-point mutants of the C-terminal zinc finger of the HIV-1 nucleocapsid protein: evidence of a critical role of cysteine 49 in Zn(2+) dissociation.
    Bombarda E; Cherradi H; Morellet N; Roques BP; Mély Y
    Biochemistry; 2002 Apr; 41(13):4312-20. PubMed ID: 11914077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thiol ligation of two zinc atoms to a class I tRNA synthetase: evidence for unshared thiols and role in amino acid binding and utilization.
    Landro JA; Schmidt E; Schimmel P; Tierney DL; Penner-Hahn JE
    Biochemistry; 1994 Nov; 33(47):14213-20. PubMed ID: 7947832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc-binding structure of a catalytic amyloid from solid-state NMR.
    Lee M; Wang T; Makhlynets OV; Wu Y; Polizzi NF; Wu H; Gosavi PM; Stöhr J; Korendovych IV; DeGrado WF; Hong M
    Proc Natl Acad Sci U S A; 2017 Jun; 114(24):6191-6196. PubMed ID: 28566494
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structural influence of hydrophobic core residues on metal binding and specificity in carbonic anhydrase II.
    Cox JD; Hunt JA; Compher KM; Fierke CA; Christianson DW
    Biochemistry; 2000 Nov; 39(45):13687-94. PubMed ID: 11076507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The crystal structures of human S100B in the zinc- and calcium-loaded state at three pH values reveal zinc ligand swapping.
    Ostendorp T; Diez J; Heizmann CW; Fritz G
    Biochim Biophys Acta; 2011 May; 1813(5):1083-91. PubMed ID: 20950652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GAL4 transcription factor is not a "zinc finger" but forms a Zn(II)2Cys6 binuclear cluster.
    Pan T; Coleman JE
    Proc Natl Acad Sci U S A; 1990 Mar; 87(6):2077-81. PubMed ID: 2107541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identification of metal ligands in the Clostridium histolyticum ColH collagenase.
    Jung CM; Matsushita O; Katayama S; Minami J; Sakurai J; Okabe A
    J Bacteriol; 1999 May; 181(9):2816-22. PubMed ID: 10217773
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Site-directed mutagenesis of the bacterial metalloamidase UDP-(3-O-acyl)-N-acetylglucosamine deacetylase (LpxC). Identification of the zinc binding site.
    Jackman JE; Raetz CR; Fierke CA
    Biochemistry; 2001 Jan; 40(2):514-23. PubMed ID: 11148046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.