These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
303 related articles for article (PubMed ID: 25724716)
1. A simple and rapid approach to manipulate pseudorabies virus genome by CRISPR/Cas9 system. Xu A; Qin C; Lang Y; Wang M; Lin M; Li C; Zhang R; Tang J Biotechnol Lett; 2015 Jun; 37(6):1265-72. PubMed ID: 25724716 [TBL] [Abstract][Full Text] [Related]
2. Practical method for targeted disruption of cilia-related genes by using CRISPR/Cas9-mediated, homology-independent knock-in system. Katoh Y; Michisaka S; Nozaki S; Funabashi T; Hirano T; Takei R; Nakayama K Mol Biol Cell; 2017 Apr; 28(7):898-906. PubMed ID: 28179459 [TBL] [Abstract][Full Text] [Related]
3. Efficient transgene insertion in a pseudorabies virus vector by CRISPR/Cas9 and marker rescue-enforced recombination. Hübner A; Keil GM; Kabuuka T; Mettenleiter TC; Fuchs W J Virol Methods; 2018 Dec; 262():38-47. PubMed ID: 30248362 [TBL] [Abstract][Full Text] [Related]
4. Recombinant Pseudorabies Virus (PRV) Expressing Firefly Luciferase Effectively Screened for CRISPR/Cas9 Single Guide RNAs and Antiviral Compounds. Tang YD; Liu JT; Fang QQ; Wang TY; Sun MX; An TQ; Tian ZJ; Cai XH Viruses; 2016 Mar; 8(4):90. PubMed ID: 27043610 [TBL] [Abstract][Full Text] [Related]
5. Generation of eGFP and Cre knockin rats by CRISPR/Cas9. Ma Y; Ma J; Zhang X; Chen W; Yu L; Lu Y; Bai L; Shen B; Huang X; Zhang L FEBS J; 2014 Sep; 281(17):3779-90. PubMed ID: 25039742 [TBL] [Abstract][Full Text] [Related]
6. Homology arms of targeting vectors for gene insertions and CRISPR/Cas9 technology: size does not matter; quality control of targeted clones does. Petrezselyova S; Kinsky S; Truban D; Sedlacek R; Burtscher I; Lickert H Cell Mol Biol Lett; 2015 Dec; 20(5):773-87. PubMed ID: 26540224 [TBL] [Abstract][Full Text] [Related]
7. CRISPR/Cas9 and TALEN-mediated knock-in approaches in zebrafish. Auer TO; Del Bene F Methods; 2014 Sep; 69(2):142-50. PubMed ID: 24704174 [TBL] [Abstract][Full Text] [Related]
8. Microhomology-mediated end-joining-dependent integration of donor DNA in cells and animals using TALENs and CRISPR/Cas9. Nakade S; Tsubota T; Sakane Y; Kume S; Sakamoto N; Obara M; Daimon T; Sezutsu H; Yamamoto T; Sakuma T; Suzuki KT Nat Commun; 2014 Nov; 5():5560. PubMed ID: 25410609 [TBL] [Abstract][Full Text] [Related]
9. Homologous Recombination-Independent Large Gene Cassette Knock-in in CHO Cells Using TALEN and MMEJ-Directed Donor Plasmids. Sakuma T; Takenaga M; Kawabe Y; Nakamura T; Kamihira M; Yamamoto T Int J Mol Sci; 2015 Oct; 16(10):23849-66. PubMed ID: 26473830 [TBL] [Abstract][Full Text] [Related]
10. Application of CRISPR/Cas9 for Rapid Genome Editing of Pseudorabies Virus and Bovine Herpesvirus-1. Yu W; Liu J; Liu Y; Forlenza M; Chen H Viruses; 2024 Feb; 16(2):. PubMed ID: 38400086 [TBL] [Abstract][Full Text] [Related]
11. CRISPR/Cas-mediated knock-in via non-homologous end-joining in the crustacean Daphnia magna. Kumagai H; Nakanishi T; Matsuura T; Kato Y; Watanabe H PLoS One; 2017; 12(10):e0186112. PubMed ID: 29045453 [TBL] [Abstract][Full Text] [Related]
12. Assembling the Streptococcus thermophilus clustered regularly interspaced short palindromic repeats (CRISPR) array for multiplex DNA targeting. Guo L; Xu K; Liu Z; Zhang C; Xin Y; Zhang Z Anal Biochem; 2015 Jun; 478():131-3. PubMed ID: 25748774 [TBL] [Abstract][Full Text] [Related]
13. Pseudorabies virus can escape from CRISPR-Cas9-mediated inhibition. Peng Z; Ouyang T; Pang D; Ma T; Chen X; Guo N; Chen F; Yuan L; Ouyang H; Ren L Virus Res; 2016 Sep; 223():197-205. PubMed ID: 27507009 [TBL] [Abstract][Full Text] [Related]
14. A Genome-Wide CRISPR/Cas9 Screen Reveals the Requirement of Host Sphingomyelin Synthase 1 for Infection with Pseudorabies Virus Mutant gD Hölper JE; Grey F; Baillie JK; Regan T; Parkinson NJ; Höper D; Thamamongood T; Schwemmle M; Pannhorst K; Wendt L; Mettenleiter TC; Klupp BG Viruses; 2021 Aug; 13(8):. PubMed ID: 34452438 [TBL] [Abstract][Full Text] [Related]
15. Constructing recombinant herpesvirus BAC vectors with mating-assisted genetically integrated clone method. Jiang S; Zhong X; Zhai C; Chen L; Ma L; Jin M; Chen H Biotechnol Lett; 2010 Jul; 32(7):903-7. PubMed ID: 20349331 [TBL] [Abstract][Full Text] [Related]
16. Generation of α-1,3-Galactosyltransferase-Deficient Porcine Embryonic Fibroblasts by CRISPR/Cas9-Mediated Knock-in of a Small Mutated Sequence and a Targeted Toxin-Based Selection System. Sato M; Kagoshima A; Saitoh I; Inada E; Miyoshi K; Ohtsuka M; Nakamura S; Sakurai T; Watanabe S Reprod Domest Anim; 2015 Oct; 50(5):872-80. PubMed ID: 26138589 [TBL] [Abstract][Full Text] [Related]
17. One-step high-efficiency CRISPR/Cas9-mediated genome editing in Streptomyces. Huang H; Zheng G; Jiang W; Hu H; Lu Y Acta Biochim Biophys Sin (Shanghai); 2015 Apr; 47(4):231-43. PubMed ID: 25739462 [TBL] [Abstract][Full Text] [Related]
18. Genome editing of pseudorabies virus in the CRISPR/Cas9 era: a mini-review. Wang HM; Qiao YY; Cai BY; Tan J; Na L; Wang Y; Lu H; Tang YD Front Vet Sci; 2023; 10():1237186. PubMed ID: 37476821 [TBL] [Abstract][Full Text] [Related]
20. Intracellular generation of single-strand template increases the knock-in efficiency by combining CRISPR/Cas9 with AAV. Xiao Q; Min T; Ma S; Hu L; Chen H; Lu D Mol Genet Genomics; 2018 Aug; 293(4):1051-1060. PubMed ID: 29671068 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]