BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 25724965)

  • 1. Mono- and dialkyl glycerol ether lipids in anaerobic bacteria: biosynthetic insights from the mesophilic sulfate reducer Desulfatibacillum alkenivorans PF2803T.
    Grossi V; Mollex D; Vinçon-Laugier A; Hakil F; Pacton M; Cravo-Laureau C
    Appl Environ Microbiol; 2015 May; 81(9):3157-68. PubMed ID: 25724965
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correction for Grossi et al., Mono- and Dialkyl Glycerol Ether Lipids in Anaerobic Bacteria: Biosynthetic Insights from the Mesophilic Sulfate Reducer Desulfatibacillum alkenivorans PF2803T.
    Grossi V; Mollex D; Vinçon-Laugier A; Hakil F; Pacton M; Cravo-Laureau C
    Appl Environ Microbiol; 2015 Sep; 81(17):6088. PubMed ID: 26254297
    [No Abstract]   [Full Text] [Related]  

  • 3. Temperature-Dependent Alkyl Glycerol Ether Lipid Composition of Mesophilic and Thermophilic Sulfate-Reducing Bacteria.
    Vinçon-Laugier A; Cravo-Laureau C; Mitteau I; Grossi V
    Front Microbiol; 2017; 8():1532. PubMed ID: 28848536
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Anaerobic 1-alkene metabolism by the alkane- and alkene-degrading sulfate reducer Desulfatibacillum aliphaticivorans strain CV2803T.
    Grossi V; Cravo-Laureau C; Méou A; Raphel D; Garzino F; Hirschler-Réa A
    Appl Environ Microbiol; 2007 Dec; 73(24):7882-90. PubMed ID: 17965214
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth and cellular fatty-acid composition of a sulphate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T, grown on n-alkenes.
    Cravo-Laureau C; Hirschler-Réa A; Matheron R; Grossi V
    C R Biol; 2004 Jul; 327(7):687-94. PubMed ID: 15344818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The genome sequence of Desulfatibacillum alkenivorans AK-01: a blueprint for anaerobic alkane oxidation.
    Callaghan AV; Morris BE; Pereira IA; McInerney MJ; Austin RN; Groves JT; Kukor JJ; Suflita JM; Young LY; Zylstra GJ; Wawrik B
    Environ Microbiol; 2012 Jan; 14(1):101-13. PubMed ID: 21651686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic oxidation of n-alkenes by sulphate-reducing bacteria from the genus Desulfatiferula: n-ketones as potential metabolites.
    Grossi V; Cravo-Laureau C; Rontani JF; Cros M; Hirschler-Réa A
    Res Microbiol; 2011 Nov; 162(9):915-22. PubMed ID: 21810468
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Growth, natural relationships, cellular fatty acids and metabolic adaptation of sulfate-reducing bacteria that utilize long-chain alkanes under anoxic conditions.
    Aeckersberg F; Rainey FA; Widdel F
    Arch Microbiol; 1998 Oct; 170(5):361-9. PubMed ID: 9818355
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiology. Life on the thermodynamic edge.
    DeLong EF
    Science; 2007 Jul; 317(5836):327-8. PubMed ID: 17641187
    [No Abstract]   [Full Text] [Related]  

  • 10. Biologically active ether lipids: incorporation of long-chain precursors into 1(3),2-diacylglycero-3(1)-O-4'-(N,N,N-trimethyl)homoserines and other lipids of Chlorella fusca.
    Weber N; Bergenthal D; Kokate CK; Mangold HK
    J Lipid Mediat; 1989; 1(1):37-48. PubMed ID: 2519885
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Anaerobic n-alkane metabolism by a sulfate-reducing bacterium, Desulfatibacillum aliphaticivorans strain CV2803T.
    Cravo-Laureau C; Grossi V; Raphel D; Matheron R; Hirschler-Réa A
    Appl Environ Microbiol; 2005 Jul; 71(7):3458-67. PubMed ID: 16000749
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Membrane lipids of mesophilic anaerobic bacteria thriving in peats have typical archaeal traits.
    Weijers JW; Schouten S; Hopmans EC; Geenevasen JA; David OR; Coleman JM; Pancost RD; Sinninghe Damsté JS
    Environ Microbiol; 2006 Apr; 8(4):648-57. PubMed ID: 16584476
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ether lipids.
    Magnusson CD; Haraldsson GG
    Chem Phys Lipids; 2011 Jul; 164(5):315-40. PubMed ID: 21635876
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Metabolic associations with archaea drive shifts in hydrogen isotope fractionation in sulfate-reducing bacterial lipids in cocultures and methane seeps.
    Dawson KS; Osburn MR; Sessions AL; Orphan VJ
    Geobiology; 2015 Sep; 13(5):462-77. PubMed ID: 25923659
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biotransformation of alkylglycerols in plant cell cultures: production of platelet activating factor and other biologically active ether lipids.
    Mangold HK; Apte SS; Weber N
    Lipids; 1991 Dec; 26(12):1086-92. PubMed ID: 1819691
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phosphite oxidation by sulphate reduction.
    Schink B; Friedrich M
    Nature; 2000 Jul; 406(6791):37. PubMed ID: 10894531
    [No Abstract]   [Full Text] [Related]  

  • 17. Characterizations of Pneumocystis carinii and rat lung lipids: glyceryl ethers and fatty alcohols.
    Kaneshiro ES; Guo Z; Sul D; Kallam KA; Jayasimhulu K; Beach DH
    J Lipid Res; 1998 Oct; 39(10):1907-17. PubMed ID: 9788237
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microbiology. Fantastic fixers.
    Fulweiler RW
    Science; 2009 Oct; 326(5951):377-8. PubMed ID: 19833949
    [No Abstract]   [Full Text] [Related]  

  • 19. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inorganic carbon fixation by sulfate-reducing bacteria in the Black Sea water column.
    Neretin LN; Abed RM; Schippers A; Schubert CJ; Kohls K; Kuypers MM
    Environ Microbiol; 2007 Dec; 9(12):3019-24. PubMed ID: 17991030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.