BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25724965)

  • 21. Anaerobic oxidation of short-chain hydrocarbons by marine sulphate-reducing bacteria.
    Kniemeyer O; Musat F; Sievert SM; Knittel K; Wilkes H; Blumenberg M; Michaelis W; Classen A; Bolm C; Joye SB; Widdel F
    Nature; 2007 Oct; 449(7164):898-901. PubMed ID: 17882164
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inorganic carbon fixation by sulfate-reducing bacteria in the Black Sea water column.
    Neretin LN; Abed RM; Schippers A; Schubert CJ; Kohls K; Kuypers MM
    Environ Microbiol; 2007 Dec; 9(12):3019-24. PubMed ID: 17991030
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Differential proteomic analysis of the metabolic network of the marine sulfate-reducer Desulfobacterium autotrophicum HRM2.
    Dörries M; Wöhlbrand L; Rabus R
    Proteomics; 2016 Nov; 16(22):2878-2893. PubMed ID: 27701823
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dietary ether lipid incorporation into tissue plasmalogens of humans and rodents.
    Das AK; Holmes RD; Wilson GN; Hajra AK
    Lipids; 1992 Jun; 27(6):401-5. PubMed ID: 1630273
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A mixed ladderane/n-alkyl glycerol diether membrane lipid in an anaerobic ammonium-oxidizing bacterium.
    Sinninghe Damsté JS; Rijpstra WI; Strous M; Jetten MS; David OR; Geenevasen JA; van Maarseveen JH
    Chem Commun (Camb); 2004 Nov; (22):2590-1. PubMed ID: 15543294
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Metabolism of Hydrocarbons in n-Alkane-Utilizing Anaerobic Bacteria.
    Wilkes H; Buckel W; Golding BT; Rabus R
    J Mol Microbiol Biotechnol; 2016; 26(1-3):138-51. PubMed ID: 26959725
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Formation of the ether lipids archaetidylglycerol and archaetidylethanolamine in Escherichia coli.
    Caforio A; Jain S; Fodran P; Siliakus M; Minnaard AJ; van der Oost J; Driessen AJ
    Biochem J; 2015 Sep; 470(3):343-55. PubMed ID: 26195826
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Anaerobic degradation of benzene by a marine sulfate-reducing enrichment culture, and cell hybridization of the dominant phylotype.
    Musat F; Widdel F
    Environ Microbiol; 2008 Jan; 10(1):10-9. PubMed ID: 18211263
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of peroxisomes in glycerol ether lipid metabolism.
    Hajra AK; Horie S; Webber KO
    Prog Clin Biol Res; 1988; 282():99-116. PubMed ID: 3071810
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.
    Michaelis W; Seifert R; Nauhaus K; Treude T; Thiel V; Blumenberg M; Knittel K; Gieseke A; Peterknecht K; Pape T; Boetius A; Amann R; Jørgensen BB; Widdel F; Peckmann J; Pimenov NV; Gulin MB
    Science; 2002 Aug; 297(5583):1013-5. PubMed ID: 12169733
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biodegradation of low-molecular-weight alkanes under mesophilic, sulfate-reducing conditions: metabolic intermediates and community patterns.
    Savage KN; Krumholz LR; Gieg LM; Parisi VA; Suflita JM; Allen J; Philp RP; Elshahed MS
    FEMS Microbiol Ecol; 2010 Jun; 72(3):485-95. PubMed ID: 20402777
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Transcriptional response of Desulfatibacillum alkenivorans AK-01 to growth on alkanes: insights from RT-qPCR and microarray analyses.
    Herath A; Wawrik B; Qin Y; Zhou J; Callaghan AV
    FEMS Microbiol Ecol; 2016 May; 92(5):fiw062. PubMed ID: 27009900
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Upflow anaerobic sludge blanket reactor--a review.
    Bal AS; Dhagat NN
    Indian J Environ Health; 2001 Apr; 43(2):1-82. PubMed ID: 12397675
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lipids from the guinea pig Harderian gland: use of picolinyl and other pyridine-containing derivatives to investigate the structures of novel branched-chain fatty acids and glycerol ethers.
    Harvey DJ
    Biol Mass Spectrom; 1991 Feb; 20(2):61-9. PubMed ID: 1883861
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oxidation of 1-O-(alk-1-enyl)-2,3-di-O-acylglycerols: models for plasmalogen oxidation.
    Foglia TA; Nungesser E; Marmer WN
    Lipids; 1988 May; 23(5):430-4. PubMed ID: 3412122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria.
    Musat F; Galushko A; Jacob J; Widdel F; Kube M; Reinhardt R; Wilkes H; Schink B; Rabus R
    Environ Microbiol; 2009 Jan; 11(1):209-19. PubMed ID: 18811643
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sulfate-reducing bacteria in a denitrification reactor packed with wood as a carbon source.
    Yamashita T; Yamamoto-Ikemoto R; Zhu J
    Bioresour Technol; 2011 Feb; 102(3):2235-41. PubMed ID: 21071213
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regiospecific analysis of neutral ether lipids by liquid chromatography/electrospray ionization/single quadrupole mass spectrometry: validation with synthetic compounds.
    Hartvigsen K; Ravandi A; Bukhave K; Hølmer G; Kuksis A
    J Mass Spectrom; 2001 Oct; 36(10):1116-24. PubMed ID: 11747105
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Metabolic by-products of anaerobic toluene degradation by sulfate-reducing enrichment cultures.
    Beller HR; Reinhard M; Grbić-Galić D
    Appl Environ Microbiol; 1992 Sep; 58(9):3192-5. PubMed ID: 1444436
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Deep-sea archaea fix and share nitrogen in methane-consuming microbial consortia.
    Dekas AE; Poretsky RS; Orphan VJ
    Science; 2009 Oct; 326(5951):422-6. PubMed ID: 19833965
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.