BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 25724965)

  • 61. Bacterial formation of phosphatic laminites off Peru.
    Arning ET; Birgel D; Brunner B; Peckmann J
    Geobiology; 2009 Jun; 7(3):295-307. PubMed ID: 19476504
    [TBL] [Abstract][Full Text] [Related]  

  • 62. [The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen. nov., sp. nov., isolated from an oil field].
    Beliakova EV; Rozanova EP; Borzenkov IA; Turova TP; Pusheva MA; Lysenko AM; Kolganov TV
    Mikrobiologiia; 2006; 75(2):201-11. PubMed ID: 16758868
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Desulfobulbus mediterraneus sp. nov., a sulfate-reducing bacterium growing on mono- and disaccharides.
    Sass A; Rütters H; Cypionka H; Sass H
    Arch Microbiol; 2002 Jun; 177(6):468-74. PubMed ID: 12029392
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Formation of complex ether lipids from 1-O-alkylglycerols in cell suspension cultures of rape.
    Weber N; Mangold HK
    Planta; 1983 Jun; 158(2):111-8. PubMed ID: 24264539
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Fermentative Cyclohexane Carboxylate Formation in Syntrophus aciditrophicus.
    Boll M; Kung JW; Ermler U; Martins BM; Buckel W
    J Mol Microbiol Biotechnol; 2016; 26(1-3):165-79. PubMed ID: 26959729
    [TBL] [Abstract][Full Text] [Related]  

  • 66. How to make a living from anaerobic ammonium oxidation.
    Kartal B; de Almeida NM; Maalcke WJ; Op den Camp HJ; Jetten MS; Keltjens JT
    FEMS Microbiol Rev; 2013 May; 37(3):428-61. PubMed ID: 23210799
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Disentangling the lipid divide: Identification of key enzymes for the biosynthesis of membrane-spanning and ether lipids in Bacteria.
    Sahonero-Canavesi DX; Siliakus MF; Abdala Asbun A; Koenen M; von Meijenfeldt FAB; Boeren S; Bale NJ; Engelman JC; Fiege K; Strack van Schijndel L; Sinninghe Damsté JS; Villanueva L
    Sci Adv; 2022 Dec; 8(50):eabq8652. PubMed ID: 36525503
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Ether-type moieties in the lipid part of glycoinositolphospholipids of Acanthamoeba rhysodes.
    Karaś MA; Russa R
    Lipids; 2014 Apr; 49(4):369-83. PubMed ID: 24535098
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Metabolism of platelet activating factor (PAF) and related ether lipids by neonatal rat myocytes.
    Qian CG; Lee TC; Snyder F
    J Lipid Mediat; 1989; 1(2):113-23. PubMed ID: 2519887
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Desulfobacter psychrotolerans sp. nov., a new psychrotolerant sulfate-reducing bacterium and descriptions of its physiological response to temperature changes.
    Tarpgaard IH; Boetius A; Finster K
    Antonie Van Leeuwenhoek; 2006 Jan; 89(1):109-24. PubMed ID: 16328859
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Ether polar lipids of methanogenic bacteria: structures, comparative aspects, and biosyntheses.
    Koga Y; Nishihara M; Morii H; Akagawa-Matsushita M
    Microbiol Rev; 1993 Mar; 57(1):164-82. PubMed ID: 8464404
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Substrate specificity of O-alkylglycerol monooxygenase (E.C. 1.14.16.5), solubilized from rat liver microsomes.
    Kötting J; Unger C; Eibl H
    Lipids; 1987 Nov; 22(11):831-5. PubMed ID: 3444374
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Biosynthesis and biotransformation of ether lipids.
    Mangold HK; Weber N
    Lipids; 1987 Nov; 22(11):789-99. PubMed ID: 3328026
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Dominance of mixed ether/ester, intact polar membrane lipids in five species of the order Rubrobacterales: Another group of bacteria not obeying the "lipid divide".
    Sinninghe Damsté JS; Rijpstra WIC; Huber KJ; Albuquerque L; Egas C; Bale NJ
    Syst Appl Microbiol; 2023 Apr; 46(2):126404. PubMed ID: 36868099
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Metabolism of alpha-glyceryl ethers by Crithidia fasciculata. I. Study of the in vivo degradation of exogenous chimyl and batyl alcohols.
    Gabrielides C; Kapoulas VM
    J Protozool; 1981 Nov; 28(4):441-7. PubMed ID: 7320947
    [TBL] [Abstract][Full Text] [Related]  

  • 76. PLASMALOGEN AND GLYCEROL ETHER CONCENTRATIONS IN NORMAL AND ATHEROSCLEROTIC AORTIC TISSUE.
    MILLER B; ANDERSON CE; PIANTADOSI C
    J Gerontol; 1964 Oct; 19():430-4. PubMed ID: 14219674
    [No Abstract]   [Full Text] [Related]  

  • 77. Substrate-dependent regulation of carbon catabolism in marine sulfate-reducing Desulfobacterium autotrophicum HRM2.
    Amann J; Lange D; Schüler M; Rabus R
    J Mol Microbiol Biotechnol; 2010; 18(2):74-84. PubMed ID: 20110731
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Evidence of interspecies hydrogen transfer from glycerol in saline environments.
    Cayol JL; Fardeau ML; Garcia JL; Ollivier B
    Extremophiles; 2002 Apr; 6(2):131-4. PubMed ID: 12013433
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Life without air.
    Goldfine H
    J Biol Chem; 2020 Mar; 295(13):4124-4133. PubMed ID: 32221031
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Development of a High-Performance Thin-Layer Chromatography Method for the Quantification of Alkyl Glycerolipids and Alkenyl Glycerolipids from Shark and Chimera Oils and Tissues.
    Papin M; Guimaraes C; Pierre-Aue B; Fontaine D; Pardessus J; Couthon H; Fromont G; Mahéo K; Chantôme A; Vandier C; Pinault M
    Mar Drugs; 2022 Apr; 20(4):. PubMed ID: 35447943
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.