BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

454 related articles for article (PubMed ID: 25724978)

  • 1. Numerical modeling of drug delivery in a dynamic solid tumor microvasculature.
    Sefidgar M; Soltani M; Raahemifar K; Sadeghi M; Bazmara H; Bazargan M; Mousavi Naeenian M
    Microvasc Res; 2015 May; 99():43-56. PubMed ID: 25724978
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of fluid friction on interstitial fluid flow coupled with blood flow through solid tumor microvascular network.
    Sefidgar M; Soltani M; Raahemifar K; Bazmara H
    Comput Math Methods Med; 2015; 2015():673426. PubMed ID: 25960764
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Numerical Modeling of Interstitial Fluid Flow Coupled with Blood Flow through a Remodeled Solid Tumor Microvascular Network.
    Soltani M; Chen P
    PLoS One; 2013; 8(6):e67025. PubMed ID: 23840579
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modeling of FMISO [F
    Asgari H; Soltani M; Sefidgar M
    Microvasc Res; 2018 Jul; 118():20-30. PubMed ID: 29408401
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Image-based spatio-temporal model of drug delivery in a heterogeneous vasculature of a solid tumor - Computational approach.
    Moradi Kashkooli F; Soltani M; Rezaeian M; Taatizadeh E; Hamedi MH
    Microvasc Res; 2019 May; 123():111-124. PubMed ID: 30711547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spatiotemporal distribution modeling of PET tracer uptake in solid tumors.
    Soltani M; Sefidgar M; Bazmara H; Casey ME; Subramaniam RM; Wahl RL; Rahmim A
    Ann Nucl Med; 2017 Feb; 31(2):109-124. PubMed ID: 27921285
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mathematical modelling of flow through vascular networks: implications for tumour-induced angiogenesis and chemotherapy strategies.
    McDougall SR; Anderson AR; Chaplain MA; Sherratt JA
    Bull Math Biol; 2002 Jul; 64(4):673-702. PubMed ID: 12216417
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Coupled modeling of blood perfusion in intravascular, interstitial spaces in tumor microvasculature.
    Wu J; Xu S; Long Q; Collins MW; König CS; Zhao G; Jiang Y; Padhani AR
    J Biomech; 2008; 41(5):996-1004. PubMed ID: 18222455
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transmural coupling of fluid flow in microcirculatory network and interstitium in tumors.
    Baish JW; Netti PA; Jain RK
    Microvasc Res; 1997 Mar; 53(2):128-41. PubMed ID: 9143544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of the microvascular tortuosity in tumor transport phenomena.
    Penta R; Ambrosi D
    J Theor Biol; 2015 Jan; 364():80-97. PubMed ID: 25218498
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mathematical modeling of capillary formation and development in tumor angiogenesis: penetration into the stroma.
    Levine HA; Pamuk S; Sleeman BD; Nilsen-Hamilton M
    Bull Math Biol; 2001 Sep; 63(5):801-63. PubMed ID: 11565406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Computer Simulations of the Tumor Vasculature: Applications to Interstitial Fluid Flow, Drug Delivery, and Oxygen Supply.
    Welter M; Rieger H
    Adv Exp Med Biol; 2016; 936():31-72. PubMed ID: 27739042
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational Multi-Scale Modeling of Drug Delivery into an Anti-Angiogenic Therapy-Treated Tumor.
    Mohammadi M; Sefidgar M; Aghanajafi C; Kohandel M; Soltani M
    Cancers (Basel); 2023 Nov; 15(22):. PubMed ID: 38001724
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical simulation of the tumor interstitial fluid transport: Consideration of drug delivery mechanism.
    Moghadam MC; Deyranlou A; Sharifi A; Niazmand H
    Microvasc Res; 2015 Sep; 101():62-71. PubMed ID: 26122936
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Multiscale modeling of fluid transport in tumors.
    Chapman SJ; Shipley RJ; Jawad R
    Bull Math Biol; 2008 Nov; 70(8):2334-57. PubMed ID: 18818972
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion.
    Cai Y; Xu S; Wu J; Long Q
    J Theor Biol; 2011 Jun; 279(1):90-101. PubMed ID: 21392511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model.
    Jain RK; Tong RT; Munn LL
    Cancer Res; 2007 Mar; 67(6):2729-35. PubMed ID: 17363594
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Study of tumor blood perfusion and its variation due to vascular normalization by anti-angiogenic therapy based on 3D angiogenic microvasculature.
    Wu J; Long Q; Xu S; Padhani AR
    J Biomech; 2009 Apr; 42(6):712-21. PubMed ID: 19268290
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of interstitial pressure on tumor growth: coupling with the blood and lymphatic vascular systems.
    Wu M; Frieboes HB; McDougall SR; Chaplain MA; Cristini V; Lowengrub J
    J Theor Biol; 2013 Mar; 320():131-51. PubMed ID: 23220211
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of transport and extravasation of nanoparticles in tumors which exhibit enhanced permeability and retention effect.
    Podduturi VP; Magaña IB; O'Neal DP; Derosa PA
    Comput Methods Programs Biomed; 2013 Oct; 112(1):58-68. PubMed ID: 23871689
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.