These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

87 related articles for article (PubMed ID: 25725023)

  • 41. The effect of amino acids on growth and phosphate metabolism in a prototrophic yeast strain.
    Ludwig JR; Oliver SG; McLaughlin CS
    Biochem Biophys Res Commun; 1977 Nov; 79(1):16-23. PubMed ID: 336043
    [No Abstract]   [Full Text] [Related]  

  • 42. Substrate-dependent ultraviolet dosage response patterns of phosphate uptake by yeast.
    SWENSON PA
    Arch Biochem Biophys; 1958 Mar; 74(1):139-49. PubMed ID: 13522232
    [No Abstract]   [Full Text] [Related]  

  • 43. Phosphate uptake in Saccharomyces cerevisiae Hansen wild type and phenotypes exposed to space flight irradiation.
    Berry D; Volz PA
    Appl Environ Microbiol; 1979 Oct; 38(4):751-3. PubMed ID: 395899
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Light effects in yeast: inhibition by visible light of growth and transport in Saccharomyces cerevisiae grown at low temperatures.
    Woodward JR; Cirillo VP; Edmunds LN
    J Bacteriol; 1978 Feb; 133(2):692-8. PubMed ID: 342502
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Soy peptides enhance yeast cell growth at low temperatures.
    Kitagawa S; Sugiyama M; Motoyama T; Abe F
    Biotechnol Lett; 2013 Mar; 35(3):375-82. PubMed ID: 23212128
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Effect of the medium pH and the cell pH upon the kinetical parameters of phosphate uptake by yeast.
    Borst-Pauwels GW; Peters PH
    Biochim Biophys Acta; 1977 May; 466(3):488-95. PubMed ID: 15598
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Tryptophan plays an important role in yeast's tolerance to isobutanol.
    Liu HL; Wang CH; Chiang EI; Huang CC; Li WH
    Biotechnol Biofuels; 2021 Oct; 14(1):200. PubMed ID: 34645498
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enrichment for temperature-sensitive and auxotrophic mutants in Saccharomyces cerevisiae by tritium suicide.
    Littlewood BS; Davies JE
    Mutat Res; 1973 Mar; 17(3):315-22. PubMed ID: 4569495
    [No Abstract]   [Full Text] [Related]  

  • 49. The uptake of radioactive phosphate by yeast. I. The uptake of phosphate by yeast compared with that by higher plants.
    BORST PAUWELS GW
    Biochim Biophys Acta; 1962 Dec; 65():403-6. PubMed ID: 14014103
    [No Abstract]   [Full Text] [Related]  

  • 50. [ON THE BIOSYNTHESIS OF TRYPTOPHAN IN SACCHAROMYCES CEREVISIAE].
    LINGENS F; LUECK W
    Hoppe Seylers Z Physiol Chem; 1963; 333():190-8. PubMed ID: 14134572
    [No Abstract]   [Full Text] [Related]  

  • 51. Modeling and parameter estimation of yeast size distribution dynamics.
    Palatt PJ; Saidel GM
    Ann Biomed Eng; 1979; 7(1):45-57. PubMed ID: 394629
    [No Abstract]   [Full Text] [Related]  

  • 52. Identification of putative negative regulators of yeast signaling through a screening for protein phosphatases acting on cell wall integrity and mating MAPK pathways.
    Sacristán-Reviriego A; Martín H; Molina M
    Fungal Genet Biol; 2015 Apr; 77():1-11. PubMed ID: 25736922
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein kinase Snf1 is involved in the proper regulation of the unfolded protein response in Saccharomyces cerevisiae.
    Ferrer-Dalmau J; Randez-Gil F; Marquina M; Prieto JA; Casamayor A
    Biochem J; 2015 May; 468(1):33-47. PubMed ID: 25730376
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterizing the in vivo role of trehalose in Saccharomyces cerevisiae using the AGT1 transporter.
    Gibney PA; Schieler A; Chen JC; Rabinowitz JD; Botstein D
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6116-21. PubMed ID: 25918382
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae.
    Tapia H; Young L; Fox D; Bertozzi CR; Koshland D
    Proc Natl Acad Sci U S A; 2015 May; 112(19):6122-7. PubMed ID: 25918381
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The repressor Rgt1 and the cAMP-dependent protein kinases control the expression of the SUC2 gene in Saccharomyces cerevisiae.
    Gancedo JM; Flores CL; Gancedo C
    Biochim Biophys Acta; 2015 Jul; 1850(7):1362-7. PubMed ID: 25810078
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The fascinating and secret wild life of the budding yeast S. cerevisiae.
    Liti G
    Elife; 2015 Mar; 4():. PubMed ID: 25807086
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Prolonged starvation drives reversible sequestration of lipid biosynthetic enzymes and organelle reorganization in Saccharomyces cerevisiae.
    Suresh HG; da Silveira Dos Santos AX; Kukulski W; Tyedmers J; Riezman H; Bukau B; Mogk A
    Mol Biol Cell; 2015 May; 26(9):1601-15. PubMed ID: 25761633
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Trans-sulfuration Pathway Seleno-amino Acids Are Mediators of Selenomethionine Toxicity in Saccharomyces cerevisiae.
    Lazard M; Dauplais M; Blanquet S; Plateau P
    J Biol Chem; 2015 Apr; 290(17):10741-50. PubMed ID: 25745108
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A tetO Toolkit To Alter Expression of Genes in Saccharomyces cerevisiae.
    Cuperus JT; Lo RS; Shumaker L; Proctor J; Fields S
    ACS Synth Biol; 2015 Jul; 4(7):842-52. PubMed ID: 25742460
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.