BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 25725309)

  • 21. Liposomes from hydrogenated soya lecithin formed in sintered glass pores.
    Zawada ZH
    Acta Pol Pharm; 2012; 69(1):107-11. PubMed ID: 22574513
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Predicting hydrophilic drug encapsulation inside unilamellar liposomes.
    Xu X; Khan MA; Burgess DJ
    Int J Pharm; 2012 Feb; 423(2):410-8. PubMed ID: 22207162
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The fractal hologram and elucidation of the structure of liposomal carriers in aqueous and biological media.
    Pippa N; Pispas S; Demetzos C
    Int J Pharm; 2012 Jul; 430(1-2):65-73. PubMed ID: 22486958
    [TBL] [Abstract][Full Text] [Related]  

  • 24. High-Throughput Continuous Flow Production of Nanoscale Liposomes by Microfluidic Vertical Flow Focusing.
    Hood RR; DeVoe DL
    Small; 2015 Nov; 11(43):5790-9. PubMed ID: 26395346
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Microfluidic-based manufacture of siRNA-lipid nanoparticles for therapeutic applications.
    Walsh C; Ou K; Belliveau NM; Leaver TJ; Wild AW; Huft J; Lin PJ; Chen S; Leung AK; Lee JB; Hansen CL; Taylor RJ; Ramsay EC; Cullis PR
    Methods Mol Biol; 2014; 1141():109-20. PubMed ID: 24567134
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Preparation and mechanical characterisation of giant unilamellar vesicles by a microfluidic method.
    Karamdad K; Law RV; Seddon JM; Brooks NJ; Ces O
    Lab Chip; 2015 Jan; 15(2):557-62. PubMed ID: 25413588
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mechanism and kinetics of the loss of poorly soluble drugs from liposomal carriers studied by a novel flow field-flow fractionation-based drug release-/transfer-assay.
    Hinna AH; Hupfeld S; Kuntsche J; Bauer-Brandl A; Brandl M
    J Control Release; 2016 Jun; 232():228-37. PubMed ID: 27112112
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Light- and temperature-responsive liposomes incorporating cinnamoyl Pluronic F127.
    Wang M; Kim JC
    Int J Pharm; 2014 Jul; 468(1-2):243-9. PubMed ID: 24709213
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics.
    Gkionis L; Aojula H; Harris LK; Tirella A
    Int J Pharm; 2021 Jul; 604():120711. PubMed ID: 34015381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Microfluidic Preparation of Nanoparticles Using Poly(ethylene Glycol)-distearoylphosphatidylethanolamine for Solubilizing Poorly Soluble Drugs.
    Terada T; Kanou M; Hashimoto Y; Tanimoto M; Sugimoto M
    J Pharm Sci; 2022 Jun; 111(6):1709-1718. PubMed ID: 34863973
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparison of different methods for preparation of a stable riccardin D formulation via nano-technology.
    Liu G; Zhang D; Jiao Y; Zheng D; Liu Y; Duan C; Jia L; Zhang Q; Lou H
    Int J Pharm; 2012 Jan; 422(1-2):516-22. PubMed ID: 22119965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The Use of a Microfluidic Device to Encapsulate a Poorly Water-Soluble Drug CoQ
    Hibino M; Yamada Y; Fujishita N; Sato Y; Maeki M; Tokeshi M; Harashima H
    J Pharm Sci; 2019 Aug; 108(8):2668-2676. PubMed ID: 30959057
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.
    Rouxhet L; Dinguizli M; Latere Dwan'isa JP; Ould-Ouali L; Twaddle P; Nathan A; Brewster ME; Rosenblatt J; Ariën A; Préat V
    Int J Pharm; 2009 Dec; 382(1-2):244-53. PubMed ID: 19666096
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Scalable solvent-free production of liposomes.
    Khadke S; Roces CB; Donaghey R; Giacobbo V; Su Y; Perrie Y
    J Pharm Pharmacol; 2020 Oct; 72(10):1328-1340. PubMed ID: 32671856
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Effect of preparation method and cholesterol on drug encapsulation studies by phospholipid liposomes.
    Cagdas FM; Ertugral N; Bucak S; Atay NZ
    Pharm Dev Technol; 2011 Aug; 16(4):408-14. PubMed ID: 20433249
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Formulation design for poorly water-soluble drugs based on biopharmaceutics classification system: basic approaches and practical applications.
    Kawabata Y; Wada K; Nakatani M; Yamada S; Onoue S
    Int J Pharm; 2011 Nov; 420(1):1-10. PubMed ID: 21884771
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A simple method for the preparation of liposomes for pharmaceutical applications: characterization of the liposomes.
    Perrett S; Golding M; Williams WP
    J Pharm Pharmacol; 1991 Mar; 43(3):154-61. PubMed ID: 1675270
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Development and characterization of a liposome preparation by a pH-gradient method.
    Vemuri S; Rhodes CT
    J Pharm Pharmacol; 1994 Oct; 46(10):778-83. PubMed ID: 7699562
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silicon microfluidic flow focusing devices for the production of size-controlled PLGA based drug loaded microparticles.
    Keohane K; Brennan D; Galvin P; Griffin BT
    Int J Pharm; 2014 Jun; 467(1-2):60-9. PubMed ID: 24680950
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Improved delivery of poorly soluble compounds using nanoparticle technology: a review.
    Kalepu S; Nekkanti V
    Drug Deliv Transl Res; 2016 Jun; 6(3):319-32. PubMed ID: 26891912
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.