These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
164 related articles for article (PubMed ID: 25725394)
1. Aquatic hazard, bioaccumulation and screening risk assessment for 6:2 fluorotelomer sulfonate. Hoke RA; Ferrell BD; Ryan T; Sloman TL; Green JW; Nabb DL; Mingoia R; Buck RC; Korzeniowski SH Chemosphere; 2015 Jun; 128():258-65. PubMed ID: 25725394 [TBL] [Abstract][Full Text] [Related]
2. Biotransformation potential of 6:2 fluorotelomer sulfonate (6:2 FTSA) in aerobic and anaerobic sediment. Zhang S; Lu X; Wang N; Buck RC Chemosphere; 2016 Jul; 154():224-230. PubMed ID: 27058914 [TBL] [Abstract][Full Text] [Related]
3. Degradation and defluorination of 6:2 fluorotelomer sulfonamidoalkyl betaine and 6:2 fluorotelomer sulfonate by Gordonia sp. strain NB4-1Y under sulfur-limiting conditions. Shaw DMJ; Munoz G; Bottos EM; Duy SV; Sauvé S; Liu J; Van Hamme JD Sci Total Environ; 2019 Jan; 647():690-698. PubMed ID: 30092525 [TBL] [Abstract][Full Text] [Related]
4. Environmental properties and aquatic hazard assessment of anionic surfactants: physico-chemical, environmental fate and ecotoxicity properties. Könnecker G; Regelmann J; Belanger S; Gamon K; Sedlak R Ecotoxicol Environ Saf; 2011 Sep; 74(6):1445-60. PubMed ID: 21550112 [TBL] [Abstract][Full Text] [Related]
5. Medium-chain chlorinated paraffins (MCCPs): a review of bioaccumulation potential in the aquatic environment. Thompson R; Vaughan M Integr Environ Assess Manag; 2014 Jan; 10(1):78-86. PubMed ID: 23788380 [TBL] [Abstract][Full Text] [Related]
6. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. Katagi T Rev Environ Contam Toxicol; 2010; 204():1-132. PubMed ID: 19957234 [TBL] [Abstract][Full Text] [Related]
7. Inverse relationship between bioconcentration factor and exposure concentration for metals: implications for hazard assessment of metals in the aquatic environment. McGeer JC; Brix KV; Skeaff JM; DeForest DK; Brigham SI; Adams WJ; Green A Environ Toxicol Chem; 2003 May; 22(5):1017-37. PubMed ID: 12729211 [TBL] [Abstract][Full Text] [Related]
9. How does predation affect the bioaccumulation of hydrophobic organic compounds in aquatic organisms? Xia X; Li H; Yang Z; Zhang X; Wang H Environ Sci Technol; 2015 Apr; 49(8):4911-20. PubMed ID: 25794043 [TBL] [Abstract][Full Text] [Related]
10. Bioaccumulation of short chain chlorinated paraffins in a typical freshwater food web contaminated by e-waste in south china: Bioaccumulation factors, tissue distribution, and trophic transfer. Sun R; Luo X; Tang B; Chen L; Liu Y; Mai B Environ Pollut; 2017 Mar; 222():165-174. PubMed ID: 28040337 [TBL] [Abstract][Full Text] [Related]
12. Occurrence and distribution of perfluoroalkyl acids (PFAAs) in surface water and sediment of a tropical coastal area (Bay of Bengal coast, Bangladesh). Habibullah-Al-Mamun M; Ahmed MK; Raknuzzaman M; Islam MS; Negishi J; Nakamichi S; Sekine M; Tokumura M; Masunaga S Sci Total Environ; 2016 Nov; 571():1089-104. PubMed ID: 27450955 [TBL] [Abstract][Full Text] [Related]
13. Transcriptomic response of Gordonia sp. strain NB4-1Y when provided with 6:2 fluorotelomer sulfonamidoalkyl betaine or 6:2 fluorotelomer sulfonate as sole sulfur source. Bottos EM; Al-Shabib EY; Shaw DMJ; McAmmond BM; Sharma A; Suchan DM; Cameron ADS; Van Hamme JD Biodegradation; 2020 Dec; 31(4-6):407-422. PubMed ID: 33150552 [TBL] [Abstract][Full Text] [Related]
14. Quantitative determination of fluorotelomer sulfonates in groundwater by LC MS/MS. Schultz MM; Barofsky DF; Field JA Environ Sci Technol; 2004 Mar; 38(6):1828-35. PubMed ID: 15074696 [TBL] [Abstract][Full Text] [Related]
15. Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. DeForest DK; Brix KV; Adams WJ Aquat Toxicol; 2007 Aug; 84(2):236-46. PubMed ID: 17673306 [TBL] [Abstract][Full Text] [Related]
16. 1,2,4-trichlorobenzene marine risk assessment with special emphasis on the Osparcom region North Sea. van Wijk D; Cohet E; Gard A; Caspers N; van Ginkel C; Thompson R; de Rooij C; Garny V; Lecloux A Chemosphere; 2006 Mar; 62(8):1294-310. PubMed ID: 16271379 [TBL] [Abstract][Full Text] [Related]
17. A weight-of-evidence approach for the bioaccumulation assessment of triclosan in aquatic species. Arnot JA; Pawlowski S; Champ S Sci Total Environ; 2018 Mar; 618():1506-1518. PubMed ID: 29029804 [TBL] [Abstract][Full Text] [Related]
18. Bioaccumulation and biomagnification potential of pharmaceuticals with a focus to the aquatic environment. Zenker A; Cicero MR; Prestinaci F; Bottoni P; Carere M J Environ Manage; 2014 Jan; 133():378-87. PubMed ID: 24419205 [TBL] [Abstract][Full Text] [Related]
19. Bioaccumulation and trophodynamics of the antidepressants sertraline and fluoxetine in laboratory-constructed, 3-level aquatic food chains. Boström ML; Ugge G; Jönsson JÅ; Berglund O Environ Toxicol Chem; 2017 Apr; 36(4):1029-1037. PubMed ID: 27696515 [TBL] [Abstract][Full Text] [Related]
20. Integrated Assessment of Bioconcentration, Toxicity, and Hazards of Chlorobenzenes in the Aquatic Environment. Djohan D; Yu Q; Connell DW Arch Environ Contam Toxicol; 2020 Feb; 78(2):216-229. PubMed ID: 31897536 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]