BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

329 related articles for article (PubMed ID: 25725403)

  • 1. Thermo-mechanical properties of poly ε-caprolactone/poly L-lactic acid blends: addition of nalidixic acid and polyethylene glycol additives.
    Douglas P; Albadarin AB; Al-Muhtaseb AH; Mangwandi C; Walker GM
    J Mech Behav Biomed Mater; 2015 May; 45():154-65. PubMed ID: 25725403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of poly ethylene glycol on the mechanical and thermal properties of bioactive poly(ε-caprolactone) melt extrudates for pharmaceutical applications.
    Douglas P; Albadarin AB; Sajjia M; Mangwandi C; Kuhs M; Collins MN; Walker GM
    Int J Pharm; 2016 Mar; 500(1-2):179-86. PubMed ID: 26794874
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical and thermal properties of conventional and microcellular injection molded poly (lactic acid)/poly (ε-caprolactone) blends.
    Zhao H; Zhao G
    J Mech Behav Biomed Mater; 2016 Jan; 53():59-67. PubMed ID: 26313249
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of poly(ɛ-caprolactone-co-L-lactide) on thermal and functional properties of poly(L-lactide).
    Qin Y; Liu S; Zhang Y; Yuan M; Li H; Yuan M
    Int J Biol Macromol; 2014 Sep; 70():327-33. PubMed ID: 25020084
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Biodegradable films of partly branched poly(l-lactide)-co-poly(epsilon-caprolactone) copolymer: modulation of phase morphology, plasticization properties and thermal depolymerization.
    Broström J; Boss A; Chronakis IS
    Biomacromolecules; 2004; 5(3):1124-34. PubMed ID: 15132708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Selective dispersion of carbon nanotubes and nanoclay in biodegradable poly(ε-caprolactone)/poly(lactic acid) blends with improved toughness, strength and thermal stability.
    Zhu B; Bai T; Wang P; Wang Y; Liu C; Shen C
    Int J Biol Macromol; 2020 Jun; 153():1272-1280. PubMed ID: 31758994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compatibilization effect of poly(epsilon-caprolactone)-b-poly(ethylene glycol) block copolymers and phase morphology analysis in immiscible poly(lactide)/poly(epsilon-caprolactone) blends.
    Na YH; He Y; Shuai X; Kikkawa Y; Doi Y; Inoue Y
    Biomacromolecules; 2002; 3(6):1179-86. PubMed ID: 12425654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modulating rheological and degradation properties of temperature-responsive gelling systems composed of blends of PCLA-PEG-PCLA triblock copolymers and their fully hexanoyl-capped derivatives.
    Petit A; Müller B; Bruin P; Meyboom R; Piest M; Kroon-Batenburg LM; de Leede LG; Hennink WE; Vermonden T
    Acta Biomater; 2012 Dec; 8(12):4260-7. PubMed ID: 22877819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microstructure and mechanical properties of biodegradable poly (D/L) lactic acid/polycaprolactone blends processed from the solvent-evaporation technique.
    Esmaeilzadeh J; Hesaraki S; Hadavi SM; Esfandeh M; Ebrahimzadeh MH
    Mater Sci Eng C Mater Biol Appl; 2017 Feb; 71():807-819. PubMed ID: 27987776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improvement in Phase Compatibility and Mechanical Properties of Poly(L-lactide)-
    Srihanam P; Srisuwan Y; Phromsopha T; Manphae A; Baimark Y
    Polymers (Basel); 2023 Oct; 15(19):. PubMed ID: 37836015
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis and water-swelling of thermo-responsive poly(ester urethane)s containing poly(epsilon-caprolactone), poly(ethylene glycol) and poly(propylene glycol).
    Loh XJ; Colin Sng KB; Li J
    Biomaterials; 2008 Aug; 29(22):3185-94. PubMed ID: 18456319
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of poly-DL-lactide/polyethylene glycol scaffolds using the gas foaming technique.
    Ji C; Annabi N; Hosseinkhani M; Sivaloganathan S; Dehghani F
    Acta Biomater; 2012 Feb; 8(2):570-8. PubMed ID: 21996623
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical characterization and modelling of the temperature-dependent impact behaviour of a biocompatible poly(L-lactide)/poly(ε-caprolactone) polymer blend.
    Gustafsson G; Nishida M; Ito Y; Häggblad HÅ; Jonsén P; Takayama T; Todo M
    J Mech Behav Biomed Mater; 2015 Nov; 51():279-90. PubMed ID: 26275490
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal and rheological properties of L-polylactide/polyethylene glycol/silicate nanocomposites films.
    Ahmed J; Varshney SK; Auras R; Hwang SW
    J Food Sci; 2010 Oct; 75(8):N97-108. PubMed ID: 21535511
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Super-tough poly (l-lactide) materials: Reactive blending with maleic anhydride grafted starch and poly (ethylene glycol) diacrylate.
    Yang C; Zhou M; Lin Y; Cheng C; Cheng F; Liu W; Zhu P
    Int J Biol Macromol; 2019 Sep; 136():1069-1075. PubMed ID: 31229539
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal, morphological and mechanical properties of flexible poly(l-lactide)-b-polyethylene glycol-b-poly(l-lactide)/thermoplastic starch blends.
    Srisuwan Y; Baimark Y
    Carbohydr Polym; 2022 May; 283():119155. PubMed ID: 35153027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uniaxial drawing and mechanical properties of poly[(R)-3-hydroxybutyrate]/poly(L-lactic acid) blends.
    Park JW; Doi Y; Iwata T
    Biomacromolecules; 2004; 5(4):1557-66. PubMed ID: 15244478
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immiscible poly(lactic acid)/poly(ε-caprolactone) for temporary implants: Compatibility and cytotoxicity.
    Finotti PF; Costa LC; Capote TS; Scarel-Caminaga RM; Chinelatto MA
    J Mech Behav Biomed Mater; 2017 Apr; 68():155-162. PubMed ID: 28171812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Osteogenic poly(ε-caprolactone)/poloxamine homogeneous blends prepared by supercritical foaming.
    de Matos MB; Puga AM; Alvarez-Lorenzo C; Concheiro A; Braga ME; de Sousa HC
    Int J Pharm; 2015 Feb; 479(1):11-22. PubMed ID: 25541145
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and properties of biomedical segmented polyurethanes based on poly(ether ester) and uniform-size diurethane diisocyanates.
    Yin S; Xia Y; Jia Q; Hou ZS; Zhang N
    J Biomater Sci Polym Ed; 2017 Jan; 28(1):119-138. PubMed ID: 27774855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.