BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 25725578)

  • 1. Optical monitoring of chemical processes in turbid biogenic liquid dispersions by Photon Density Wave spectroscopy.
    Hass R; Munzke D; Ruiz SV; Tippmann J; Reich O
    Anal Bioanal Chem; 2015 Apr; 407(10):2791-802. PubMed ID: 25725578
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Analysis of aggregation and dispersion states of small particles in concentrated suspension by using diffused photon density wave spectroscopy.
    Tanguchi J; Murata H; Okamura Y
    Colloids Surf B Biointerfaces; 2010 Mar; 76(1):137-44. PubMed ID: 19914810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Industrial applications of photon density wave spectroscopy for in-line particle sizing [Invited].
    Hass R; Münzberg M; Bressel L; Reich O
    Appl Opt; 2013 Mar; 52(7):1423-31. PubMed ID: 23458794
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nonlinear light scattering and spectroscopy of particles and droplets in liquids.
    Roke S; Gonella G
    Annu Rev Phys Chem; 2012; 63():353-78. PubMed ID: 22263911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inline monitoring of high cell density cultivation of Scenedesmus rubescens in a mesh ultra-thin layer photobioreactor by photon density wave spectroscopy.
    Sandmann M; Münzberg M; Bressel L; Reich O; Hass R
    BMC Res Notes; 2022 Feb; 15(1):54. PubMed ID: 35168633
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Single-fiber diffuse optical time-of-flight spectroscopy.
    Alerstam E; Svensson T; Andersson-Engels S; Spinelli L; Contini D; Dalla Mora A; Tosi A; Zappa F; Pifferi A
    Opt Lett; 2012 Jul; 37(14):2877-9. PubMed ID: 22825164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Real-time monitoring of biomass during Escherichia coli high-cell-density cultivations by in-line photon density wave spectroscopy.
    Schiewe T; Gutschmann B; Santolin L; Waldburger S; Neubauer P; Hass R; Riedel SL
    Biotechnol Bioeng; 2023 Oct; 120(10):2880-2889. PubMed ID: 37272419
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limitations of turbidity process probes and formazine as their calibration standard.
    Münzberg M; Hass R; Dinh Duc Khanh N; Reich O
    Anal Bioanal Chem; 2017 Jan; 409(3):719-728. PubMed ID: 27695985
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Examples of the application of optical process and quality sensing (OPQS) to beer brewing and polyurethane foaming processes.
    Engelhard S; Kumke MU; Löhmannsröben HG
    Anal Bioanal Chem; 2006 Mar; 384(5):1107-12. PubMed ID: 16007439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired rennetability of heated milk; study of enzymatic hydrolysis and gelation kinetics.
    Vasbinder AJ; Rollema HS; de Kruif CG
    J Dairy Sci; 2003 May; 86(5):1548-55. PubMed ID: 12778565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monte Carlo analysis of single fiber reflectance spectroscopy: photon path length and sampling depth.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Phys Med Biol; 2009 Nov; 54(22):6991-7008. PubMed ID: 19887712
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Differential optical spectroscopy for absorption characterization of mono & two-layered scattering media.
    Billet C; Sablong R
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():2622-5. PubMed ID: 18002533
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure, dynamics, and optical properties of concentrated milk suspensions: an analogy to hard-sphere liquids.
    Alexander M; Rojas-Ochoa LF; Leser M; Schurtenberger P
    J Colloid Interface Sci; 2002 Sep; 253(1):35-46. PubMed ID: 16290828
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultrasonic analysis of rennet-induced pre-gelation and gelation processes in milk.
    Dwyer C; Donnelly L; Buckin V
    J Dairy Res; 2005 Aug; 72(3):303-10. PubMed ID: 16174361
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Measurement of the absorption and scattering properties of turbid liquid foods using hyperspectral imaging.
    Qin J; Lu R
    Appl Spectrosc; 2007 Apr; 61(4):388-96. PubMed ID: 17456257
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Determination of the heat stability profiles of concentrated milk and milk ingredients using high resolution ultrasonic spectroscopy.
    Lehmann L; Buckin V
    J Dairy Sci; 2005 Sep; 88(9):3121-9. PubMed ID: 16107401
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Potential of a spectroscopic measurement method using adding-doubling to retrieve the bulk optical properties of dense microalgal media.
    Bellini S; Bendoula R; Latrille E; Roger JM
    Appl Spectrosc; 2014; 68(10):1154-67. PubMed ID: 25198389
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Method to quantitate absorption coefficients from single fiber reflectance spectra without knowledge of the scattering properties.
    Kanick SC; Robinson DJ; Sterenborg HJ; Amelink A
    Opt Lett; 2011 Aug; 36(15):2791-3. PubMed ID: 21808314
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Time-resolved reflectance spectroscopy in turbid tissues.
    Jacques SL
    IEEE Trans Biomed Eng; 1989 Dec; 36(12):1155-61. PubMed ID: 2606489
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probing the colloidal properties of skim milk using acoustic and electroacoustic spectroscopy. Effect of concentration, heating and acidification.
    Gülseren I; Alexander M; Corredig M
    J Colloid Interface Sci; 2010 Nov; 351(2):493-500. PubMed ID: 20727530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.