These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
56 related articles for article (PubMed ID: 25725633)
1. Erratum to: Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils. Jiang B; Zhu D; Song Y; Zhang D; Liu Z; Zhang X; Huang WE; Li G Biotechnol Lett; 2015 Jun; 37(6):1323. PubMed ID: 25725633 [No Abstract] [Full Text] [Related]
2. Use of a whole-cell bioreporter, Acinetobacter baylyi, to estimate the genotoxicity and bioavailability of chromium(VI)-contaminated soils. Jiang B; Zhu D; Song Y; Zhang D; Liu Z; Zhang X; Huang WE; Li G Biotechnol Lett; 2015 Feb; 37(2):343-8. PubMed ID: 25326171 [TBL] [Abstract][Full Text] [Related]
3. Whole cell bioreporter application for rapid detection and evaluation of crude oil spill in seawater caused by Dalian oil tank explosion. Zhang D; Ding A; Cui S; Hu C; Thornton SF; Dou J; Sun Y; Huang WE Water Res; 2013 Mar; 47(3):1191-200. PubMed ID: 23269319 [TBL] [Abstract][Full Text] [Related]
4. Toxicity assessment and modelling of Moringa oleifera seeds in water purification by whole cell bioreporter. Al-Anizi AA; Hellyer MT; Zhang D Water Res; 2014 Jun; 56():77-87. PubMed ID: 24657325 [TBL] [Abstract][Full Text] [Related]
5. Optimization of bacterial whole cell bioreporters for toxicity assay of environmental samples. Song Y; Li G; Thornton SF; Thompson IP; Banwart SA; Lerner DN; Huang WE Environ Sci Technol; 2009 Oct; 43(20):7931-8. PubMed ID: 19921916 [TBL] [Abstract][Full Text] [Related]
6. Chemodynamics of chromium reduction in soils: implications to bioavailability. Choppala G; Bolan N; Seshadri B J Hazard Mater; 2013 Oct; 261():718-24. PubMed ID: 23608747 [TBL] [Abstract][Full Text] [Related]
7. Cr (VI) remediation by indigenous bacteria in soils contaminated by chromium-containing slag. Chai L; Huang S; Yang Z; Peng B; Huang Y; Chen Y J Hazard Mater; 2009 Aug; 167(1-3):516-22. PubMed ID: 19246154 [TBL] [Abstract][Full Text] [Related]
8. Hexavalent chromium reduction by Acinetobacter haemolyticus isolated from heavy-metal contaminated wastewater. Zakaria ZA; Zakaria Z; Surif S; Ahmad WA J Hazard Mater; 2007 Jul; 146(1-2):30-8. PubMed ID: 17188812 [TBL] [Abstract][Full Text] [Related]
9. Bacterial whole-cell biosensors for the detection of contaminants in water and soils. Wang Y; Zhang D; Davison PA; Huang WE Methods Mol Biol; 2014; 1096():155-68. PubMed ID: 24515368 [TBL] [Abstract][Full Text] [Related]
10. Influence of soil geochemical and physical properties on chromium(VI) sorption and bioaccessibility. Jardine PM; Stewart MA; Barnett MO; Basta NT; Brooks SC; Fendorf S; Mehlhorn TL Environ Sci Technol; 2013 Oct; 47(19):11241-8. PubMed ID: 23941581 [TBL] [Abstract][Full Text] [Related]
11. Plasmid-mediated fitness advantage of Acinetobacter baylyi in sulfadiazine-polluted soil. Jechalke S; Kopmann C; Richter M; Moenickes S; Heuer H; Smalla K FEMS Microbiol Lett; 2013 Nov; 348(2):127-32. PubMed ID: 24118075 [TBL] [Abstract][Full Text] [Related]
12. The influence of biochar and black carbon on reduction and bioavailability of chromate in soils. Choppala GK; Bolan NS; Megharaj M; Chen Z; Naidu R J Environ Qual; 2012; 41(4):1175-84. PubMed ID: 22751060 [TBL] [Abstract][Full Text] [Related]
13. Bioremediation of Cr(VI) in contaminated soils. Krishna KR; Philip L J Hazard Mater; 2005 May; 121(1-3):109-17. PubMed ID: 15885411 [TBL] [Abstract][Full Text] [Related]
14. Assessment of chromium biostabilization in contaminated soils using standard leaching and sequential extraction techniques. Papassiopi N; Kontoyianni A; Vaxevanidou K; Xenidis A Sci Total Environ; 2009 Jan; 407(2):925-36. PubMed ID: 18945478 [TBL] [Abstract][Full Text] [Related]
15. Validation of an electrothermal atomization atomic absorption spectrometry method for quantification of total chromium and chromium(VI) in wild mushrooms and underlying soils. Figueiredo E; Soares ME; Baptista P; Castro M; Bastos ML J Agric Food Chem; 2007 Aug; 55(17):7192-8. PubMed ID: 17661487 [TBL] [Abstract][Full Text] [Related]
16. 2D crossed electric field for electrokinetic remediation of chromium contaminated soil. Zhang P; Jin C; Zhao Z; Tian G J Hazard Mater; 2010 May; 177(1-3):1126-33. PubMed ID: 20122801 [TBL] [Abstract][Full Text] [Related]
17. Assessment of the human health risks posed by exposure to chromium-contaminated soils. Sheehan PJ; Meyer DM; Sauer MM; Paustenbach DJ J Toxicol Environ Health; 1991 Feb; 32(2):161-201. PubMed ID: 1995927 [TBL] [Abstract][Full Text] [Related]
18. Biodegradation pathways of chloroanilines by Acinetobacter baylyi strain GFJ2. Hongsawat P; Vangnai AS J Hazard Mater; 2011 Feb; 186(2-3):1300-7. PubMed ID: 21177022 [TBL] [Abstract][Full Text] [Related]
19. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. Turpeinen R; Kairesalo T; Häggblom MM FEMS Microbiol Ecol; 2004 Jan; 47(1):39-50. PubMed ID: 19712345 [TBL] [Abstract][Full Text] [Related]
20. Determination of the bioaccessibility of chromium in Glasgow soil and the implications for human health risk assessment. Broadway A; Cave MR; Wragg J; Fordyce FM; Bewley RJ; Graham MC; Ngwenya BT; Farmer JG Sci Total Environ; 2010 Dec; 409(2):267-77. PubMed ID: 21035835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]