These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

56 related articles for article (PubMed ID: 25725633)

  • 21. The effectiveness of four organic matter amendments for decreasing resin-extractable Cr(VI) in Cr(VI)-contaminated soils.
    Chiu CC; Cheng CJ; Lin TH; Juang KW; Lee DY
    J Hazard Mater; 2009 Jan; 161(2-3):1239-44. PubMed ID: 18524481
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Unique organization of the 16S-23S intergenic spacer regions of strains of Acinetobacter baylyi provides a means for its identification from other Acinetobacter species.
    Maslunka C; Gürtler V; Carr EL; Seviour RJ
    J Microbiol Methods; 2008 Jun; 73(3):227-36. PubMed ID: 18436316
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Reduction of hexavalent chromium by ascorbic acid in aqueous solutions.
    Xu XR; Li HB; Li XY; Gu JD
    Chemosphere; 2004 Nov; 57(7):609-13. PubMed ID: 15488923
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Intracellular and extracellular factors influencing Cr(VI) and Cr(III) genotoxicity.
    Sobol Z; Schiestl RH
    Environ Mol Mutagen; 2012 Mar; 53(2):94-100. PubMed ID: 22020802
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Acinetobacter bioreporter assessing heavy metals toxicity.
    Abd-El-Haleem D; Zaki S; Abulhamd A; Elbery H; Abu-Elreesh G
    J Basic Microbiol; 2006; 46(5):339-47. PubMed ID: 17009289
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The extractability of Cr(VI) from contaminated soil in synthetic sweat.
    Wainman T; Hazen RE; Lioy PJ
    J Expo Anal Environ Epidemiol; 1994; 4(2):171-81. PubMed ID: 7549472
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular characterization of the gene encoding a new AmpC beta-lactamase in Acinetobacter baylyi.
    Beceiro A; Pérez-Llarena FJ; Pérez A; Tomás Mdel M; Fernández A; Mallo S; Villanueva R; Bou G
    J Antimicrob Chemother; 2007 May; 59(5):996-1000. PubMed ID: 17403709
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Oxidation-reduction transformations of chromium in aerobic soils and the role of electron-shuttling quinones.
    Brose DA; James BR
    Environ Sci Technol; 2010 Dec; 44(24):9438-44. PubMed ID: 21105643
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Role of quantitative mineralogical analysis in the investigation of sites contaminated by chromite ore processing residue.
    Hillier S; Roe MJ; Geelhoed JS; Fraser AR; Farmer JG; Paterson E
    Sci Total Environ; 2003 Jun; 308(1-3):195-210. PubMed ID: 12738213
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure and biosynthesis of fimsbactins A-F, siderophores from Acinetobacter baumannii and Acinetobacter baylyi.
    Proschak A; Lubuta P; Grün P; Löhr F; Wilharm G; De Berardinis V; Bode HB
    Chembiochem; 2013 Mar; 14(5):633-8. PubMed ID: 23456955
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Evaluation of biosorption potency of Acinetobacter sp. for removal of hexavalent chromium from tannery effluent.
    Srivastava S; Thakur IS
    Biodegradation; 2007 Oct; 18(5):637-46. PubMed ID: 17203372
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Reduction kinetics of hexavalent chromium in soils and its correlation with soil properties.
    Xiao W; Zhang Y; Li T; Chen B; Wang H; He Z; Yang X
    J Environ Qual; 2012; 41(5):1452-8. PubMed ID: 23099936
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Field evaluation of a sampling and analytical method for environmental levels of airborne hexavalent chromium.
    Sheehan P; Ricks R; Ripple S; Paustenbach D
    Am Ind Hyg Assoc J; 1992 Jan; 53(1):57-68. PubMed ID: 1590220
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils.
    Juhasz AL; Smith E; Weber J; Rees M; Rofe A; Kuchel T; Sansom L; Naidu R
    Chemosphere; 2007 Oct; 69(6):961-6. PubMed ID: 17585998
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Lack of genotoxic effects in hematopoietic and gastrointestinal cells of mice receiving chromium(VI) with the drinking water.
    De Flora S; D'Agostini F; Balansky R; Micale R; Baluce B; Izzotti A
    Mutat Res; 2008; 659(1-2):60-7. PubMed ID: 18155955
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Removal of Cr(VI) from contaminated soil by electrokinetic remediation.
    Sawada A; Mori K; Tanaka S; Fukushima M; Tatsumi K
    Waste Manag; 2004; 24(5):483-90. PubMed ID: 15120432
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioremediation of chromium(VI) contaminated soil by Streptomyces sp. MC1.
    Polti MA; García RO; Amoroso MJ; Abate CM
    J Basic Microbiol; 2009 Jun; 49(3):285-92. PubMed ID: 19025876
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Field procedures to assess soils and waste disposals.
    Götzl A; Riepe W
    Talanta; 2001 Mar; 53(6):1187-98. PubMed ID: 18968212
    [TBL] [Abstract][Full Text] [Related]  

  • 39. In vitro reduction of hexavalent chromium by a cell-free extract of Bacillus sp. ES 29 stimulated by Cu2+.
    Camargo FA; Okeke BC; Bento FM; Frankenberger WT
    Appl Microbiol Biotechnol; 2003 Oct; 62(5-6):569-73. PubMed ID: 12679851
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterizing the regulation of the Pu promoter in Acinetobacter baylyi ADP1.
    Huang WE; Singer AC; Spiers AJ; Preston GM; Whiteley AS
    Environ Microbiol; 2008 Jul; 10(7):1668-80. PubMed ID: 18363715
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 3.