These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 25725739)

  • 1. Ion transport and structural dynamics in homologous ammonium and phosphonium-based room temperature ionic liquids.
    Griffin PJ; Holt AP; Tsunashima K; Sangoro JR; Kremer F; Sokolov AP
    J Chem Phys; 2015 Feb; 142(8):084501. PubMed ID: 25725739
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Orientational and translational dynamics in room temperature ionic liquids.
    Rivera A; Brodin A; Pugachev A; Rössler EA
    J Chem Phys; 2007 Mar; 126(11):114503. PubMed ID: 17381216
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Charge transport and dipolar relaxations in phosphonium-based ionic liquids.
    Cosby T; Vicars Z; Mapesa EU; Tsunashima K; Sangoro J
    J Chem Phys; 2017 Dec; 147(23):234504. PubMed ID: 29272921
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interplay between hydrophobic aggregation and charge transport in the ionic liquid methyltrioctylammonium bis(trifluoromethylsulfonyl)imide.
    Griffin PJ; Holt AP; Wang Y; Novikov VN; Sangoro JR; Kremer F; Sokolov AP
    J Phys Chem B; 2014 Jan; 118(3):783-90. PubMed ID: 24387344
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Decoupling of ionic conductivity from structural dynamics in polymerized ionic liquids.
    Sangoro JR; Iacob C; Agapov AL; Wang Y; Berdzinski S; Rexhausen H; Strehmel V; Friedrich C; Sokolov AP; Kremer F
    Soft Matter; 2014 May; 10(20):3536-40. PubMed ID: 24718358
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electronic structure calculations and physicochemical experiments quantify the competitive liquid ion association and probe stabilisation effects for nitrobenzospiropyran in phosphonium-based ionic liquids.
    Thompson D; Coleman S; Diamond D; Byrne R
    Phys Chem Chem Phys; 2011 Apr; 13(13):6156-68. PubMed ID: 21350746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular Insight into the Ionic Conduction of Quaternary Ammonium and Phosphonium Cation-Based Ionic Liquids Using Dielectric and Spectroscopy Analyses.
    Matsumoto M; Takeuchi K; Inoue Y; Tsunashima K; Yamada H
    J Phys Chem B; 2022 Dec; 126(49):10490-10499. PubMed ID: 36417887
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Universal scaling of charge transport in glass-forming ionic liquids.
    Sangoro JR; Iacob C; Serghei A; Friedrich C; Kremer F
    Phys Chem Chem Phys; 2009 Feb; 11(6):913-6. PubMed ID: 19177207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular features contributing to the lower viscosity of phosphonium ionic liquids compared to their ammonium analogues.
    Scarbath-Evers LK; Hunt PA; Kirchner B; MacFarlane DR; Zahn S
    Phys Chem Chem Phys; 2015 Aug; 17(31):20205-16. PubMed ID: 26186475
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication: Influence of nanophase segregation on ion transport in room temperature ionic liquids.
    Griffin PJ; Wang Y; Holt AP; Sokolov AP
    J Chem Phys; 2016 Apr; 144(15):151104. PubMed ID: 27389202
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermal, rheological, and ion-transport properties of phosphonium-based ionic liquids.
    Green MD; Schreiner C; Long TE
    J Phys Chem A; 2011 Dec; 115(47):13829-35. PubMed ID: 22026727
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ammonium- and phosphonium-based temperature control-type polyoxometalate ionic liquids.
    Li Y; Wu X; Wu Q; Ding H; Yan W
    Dalton Trans; 2014 Sep; 43(36):13591-5. PubMed ID: 25096194
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heavy atom substitution effects in non-aromatic ionic liquids: ultrafast dynamics and physical properties.
    Shirota H; Fukazawa H; Fujisawa T; Wishart JF
    J Phys Chem B; 2010 Jul; 114(29):9400-12. PubMed ID: 20593773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamic and structural evidence of mesoscopic aggregation in phosphonium ionic liquids.
    Cosby T; Vicars Z; Heres M; Tsunashima K; Sangoro J
    J Chem Phys; 2018 May; 148(19):193815. PubMed ID: 30307249
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Observation of highly decoupled conductivity in protic ionic conductors.
    Wojnarowska Z; Wang Y; Paluch KJ; Sokolov AP; Paluch M
    Phys Chem Chem Phys; 2014 May; 16(19):9123-7. PubMed ID: 24699717
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal and transport properties of ionic liquids based on benzyl-substituted phosphonium cations.
    Tsunashima K; Niwa E; Kodama S; Sugiya M; Ono Y
    J Phys Chem B; 2009 Dec; 113(48):15870-4. PubMed ID: 19929012
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Understanding the ion jelly conductivity mechanism.
    Carvalho T; Augusto V; Brás AR; Lourenço NM; Afonso CA; Barreiros S; Correia NT; Vidinha P; Cabrita EJ; Dias CJ; Dionísio M; Roling B
    J Phys Chem B; 2012 Mar; 116(9):2664-76. PubMed ID: 22369088
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge transport and glassy dynamics in ionic liquids.
    Sangoro JR; Kremer F
    Acc Chem Res; 2012 Apr; 45(4):525-32. PubMed ID: 22082024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Decoupling charge transport from the structural dynamics in room temperature ionic liquids.
    Griffin P; Agapov AL; Kisliuk A; Sun XG; Dai S; Novikov VN; Sokolov AP
    J Chem Phys; 2011 Sep; 135(11):114509. PubMed ID: 21950873
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Translation-rotation decoupling and nonexponentiality in room temperature ionic liquids.
    Griffin PJ; Agapov AL; Sokolov AP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2012 Aug; 86(2 Pt 1):021508. PubMed ID: 23005770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.