These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 25725774)

  • 1. (Dis-)Harmony in movement: effects of musical dissonance on movement timing and form.
    Komeilipoor N; Rodger MW; Craig CM; Cesari P
    Exp Brain Res; 2015 May; 233(5):1585-95. PubMed ID: 25725774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neural correlates of consonance, dissonance, and the hierarchy of musical pitch in the human brainstem.
    Bidelman GM; Krishnan A
    J Neurosci; 2009 Oct; 29(42):13165-71. PubMed ID: 19846704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient and sustained processing of musical consonance in auditory cortex and the effect of musicality.
    Andermann M; Patterson RD; Rupp A
    J Neurophysiol; 2020 Apr; 123(4):1320-1331. PubMed ID: 32073930
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phase locked neural activity in the human brainstem predicts preference for musical consonance.
    Bones O; Hopkins K; Krishnan A; Plack CJ
    Neuropsychologia; 2014 May; 58(100):23-32. PubMed ID: 24690415
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Consonance and dissonance of musical chords: neural correlates in auditory cortex of monkeys and humans.
    Fishman YI; Volkov IO; Noh MD; Garell PC; Bakken H; Arezzo JC; Howard MA; Steinschneider M
    J Neurophysiol; 2001 Dec; 86(6):2761-88. PubMed ID: 11731536
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional organization for musical consonance and tonal pitch hierarchy in human auditory cortex.
    Bidelman GM; Grall J
    Neuroimage; 2014 Nov; 101():204-14. PubMed ID: 25019679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. On the Relevance of Natural Stimuli for the Study of Brainstem Correlates: The Example of Consonance Perception.
    Cousineau M; Bidelman GM; Peretz I; Lehmann A
    PLoS One; 2015; 10(12):e0145439. PubMed ID: 26720000
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indifference to dissonance in native Amazonians reveals cultural variation in music perception.
    McDermott JH; Schultz AF; Undurraga EA; Godoy RA
    Nature; 2016 Jul; 535(7613):547-50. PubMed ID: 27409816
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Early neural responses underlie advantages for consonance over dissonance.
    Crespo-Bojorque P; Monte-Ordoño J; Toro JM
    Neuropsychologia; 2018 Aug; 117():188-198. PubMed ID: 29885961
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The basis of musical consonance as revealed by congenital amusia.
    Cousineau M; McDermott JH; Peretz I
    Proc Natl Acad Sci U S A; 2012 Nov; 109(48):19858-63. PubMed ID: 23150582
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Consonant chords stimulate higher EEG gamma activity than dissonant chords.
    Park JY; Park H; Kim JI; Park HJ
    Neurosci Lett; 2011 Jan; 488(1):101-5. PubMed ID: 21073923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurobiological foundations for the theory of harmony in western tonal music.
    Tramo MJ; Cariani PA; Delgutte B; Braida LD
    Ann N Y Acad Sci; 2001 Jun; 930():92-116. PubMed ID: 11458869
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impaired Perception of Sensory Consonance and Dissonance in Cochlear Implant Users.
    Caldwell MT; Jiradejvong P; Limb CJ
    Otol Neurotol; 2016 Mar; 37(3):229-34. PubMed ID: 26825669
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Losing the music: aging affects the perception and subcortical neural representation of musical harmony.
    Bones O; Plack CJ
    J Neurosci; 2015 Mar; 35(9):4071-80. PubMed ID: 25740534
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neural activity related to discrimination and vocal production of consonant and dissonant musical intervals.
    González-García N; González MA; Rendón PL
    Brain Res; 2016 Jul; 1643():59-69. PubMed ID: 27134038
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Auditory-nerve responses predict pitch attributes related to musical consonance-dissonance for normal and impaired hearing.
    Bidelman GM; Heinz MG
    J Acoust Soc Am; 2011 Sep; 130(3):1488-502. PubMed ID: 21895089
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Subcortical representation of musical dyads: individual differences and neural generators.
    Bones O; Plack CJ
    Hear Res; 2015 May; 323():9-21. PubMed ID: 25636498
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Musicians and non-musicians' different reliance of features in consonance perception: a behavioral and ERP study.
    Kung CC; Hsieh TH; Liou JY; Lin KJ; Shaw FZ; Liang SF
    Clin Neurophysiol; 2014 May; 125(5):971-8. PubMed ID: 24252396
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The sound of music: differentiating musicians using a fast, musical multi-feature mismatch negativity paradigm.
    Vuust P; Brattico E; Seppänen M; Näätänen R; Tervaniemi M
    Neuropsychologia; 2012 Jun; 50(7):1432-43. PubMed ID: 22414595
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Perceptual fusion of musical notes by native Amazonians suggests universal representations of musical intervals.
    McPherson MJ; Dolan SE; Durango A; Ossandon T; Valdés J; Undurraga EA; Jacoby N; Godoy RA; McDermott JH
    Nat Commun; 2020 Jun; 11(1):2786. PubMed ID: 32493923
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.