These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 25726326)

  • 1. Biochemical, cytological, and immunological mechanisms of rhododendrol-induced leukoderma.
    Tokura Y; Fujiyama T; Ikeya S; Tatsuno K; Aoshima M; Kasuya A; Ito T
    J Dermatol Sci; 2015 Mar; 77(3):146-9. PubMed ID: 25726326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Melanocyte-specific cytotoxic T lymphocytes in patients with rhododendrol-induced leukoderma.
    Fujiyama T; Ikeya S; Ito T; Tatsuno K; Aoshima M; Kasuya A; Sakabe J; Suzuki T; Tokura Y
    J Dermatol Sci; 2015 Mar; 77(3):190-2. PubMed ID: 25724360
    [No Abstract]   [Full Text] [Related]  

  • 3. Depigmentation caused by application of the active brightening material, rhododendrol, is related to tyrosinase activity at a certain threshold.
    Kasamatsu S; Hachiya A; Nakamura S; Yasuda Y; Fujimori T; Takano K; Moriwaki S; Hase T; Suzuki T; Matsunaga K
    J Dermatol Sci; 2014 Oct; 76(1):16-24. PubMed ID: 25082450
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An immune pathological and ultrastructural skin analysis for rhododenol-induced leukoderma patients.
    Tanemura A; Yang L; Yang F; Nagata Y; Wataya-Kaneda M; Fukai K; Tsuruta D; Ohe R; Yamakawa M; Suzuki T; Katayama I
    J Dermatol Sci; 2015 Mar; 77(3):185-8. PubMed ID: 25676426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Substantial evidence for the rhododendrol-induced generation of hydroxyl radicals that causes melanocyte cytotoxicity and induces chemical leukoderma.
    Gabe Y; Miyaji A; Kohno M; Hachiya A; Moriwaki S; Baba T
    J Dermatol Sci; 2018 Sep; 91(3):311-316. PubMed ID: 30005897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhododenol-induced leukoderma in a mouse model mimicking Japanese skin.
    Abe Y; Okamura K; Kawaguchi M; Hozumi Y; Aoki H; Kunisada T; Ito S; Wakamatsu K; Matsunaga K; Suzuki T
    J Dermatol Sci; 2016 Jan; 81(1):35-43. PubMed ID: 26547111
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Leukoderma caused by chemicals: mechanisms underlying 4-alkyl/aryl-substituted phenols- and rhododendrol-induced melanocyte loss].
    Nishimaki-Mogami T
    Kokuritsu Iyakuhin Shokuhin Eisei Kenkyusho Hokoku; 2015; (133):13-20. PubMed ID: 26821466
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Open-label pilot study to evaluate the effectiveness of topical bimatoprost on rhododendrol-induced refractory leukoderma.
    Fukaya S; Kamata M; Kasanuki T; Yokobori M; Takeoka S; Hayashi K; Tanaka T; Fukuyasu A; Ishikawa T; Ohnishi T; Iimuro S; Tada Y; Watanabe S
    J Dermatol; 2018 Nov; 45(11):1283-1288. PubMed ID: 30156328
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhododendrol, a depigmentation-inducing phenolic compound, exerts melanocyte cytotoxicity via a tyrosinase-dependent mechanism.
    Sasaki M; Kondo M; Sato K; Umeda M; Kawabata K; Takahashi Y; Suzuki T; Matsunaga K; Inoue S
    Pigment Cell Melanoma Res; 2014 Sep; 27(5):754-63. PubMed ID: 24890809
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Possible involvement of CCR4+ CD8+ T cells and elevated plasma CCL22 and CCL17 in patients with rhododenol-induced leukoderma.
    Nishioka M; Tanemura A; Yang L; Tanaka A; Arase N; Katayama I
    J Dermatol Sci; 2015 Mar; 77(3):188-90. PubMed ID: 25766765
    [No Abstract]   [Full Text] [Related]  

  • 11. Biochemical Mechanism of Rhododendrol-Induced Leukoderma.
    Ito S; Wakamatsu K
    Int J Mol Sci; 2018 Feb; 19(2):. PubMed ID: 29439519
    [No Abstract]   [Full Text] [Related]  

  • 12. Upregulation of CD86 and IL-12 by rhododendrol in THP-1 cells cocultured with melanocytes through ROS and ATP.
    Katahira Y; Sakamoto E; Watanabe A; Furusaka Y; Inoue S; Hasegawa H; Mizoguchi I; Yo K; Yamaji F; Toyoda A; Yoshimoto T
    J Dermatol Sci; 2022 Dec; 108(3):167-177. PubMed ID: 36610941
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glutathione maintenance is crucial for survival of melanocytes after exposure to rhododendrol.
    Kondo M; Kawabata K; Sato K; Yamaguchi S; Hachiya A; Takahashi Y; Inoue S
    Pigment Cell Melanoma Res; 2016 Sep; 29(5):541-9. PubMed ID: 27223685
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tyrosinase-catalyzed oxidation of rhododendrol produces 2-methylchromane-6,7-dione, the putative ultimate toxic metabolite: implications for melanocyte toxicity.
    Ito S; Ojika M; Yamashita T; Wakamatsu K
    Pigment Cell Melanoma Res; 2014 Sep; 27(5):744-53. PubMed ID: 24903082
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Zebrafish as a new model for rhododendrol-induced leukoderma.
    Hayazaki M; Hatano O; Shimabayashi S; Akiyama T; Takemori H; Hamamoto A
    Pigment Cell Melanoma Res; 2021 Nov; 34(6):1029-1038. PubMed ID: 34310852
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 4-(4-hydroroxyphenyl)-2-butanol (rhododendrol) activates the autophagy-lysosome pathway in melanocytes: insights into the mechanisms of rhododendrol-induced leukoderma.
    Yang L; Yang F; Wataya-Kaneda M; Tanemura A; Tsuruta D; Katayama I
    J Dermatol Sci; 2015 Mar; 77(3):182-5. PubMed ID: 25680854
    [No Abstract]   [Full Text] [Related]  

  • 17. Rhododendrol-induced leukoderma update II: Pathophysiology, mechanisms, risk evaluation, and possible mechanism-based treatments in comparison with vitiligo.
    Inoue S; Katayama I; Suzuki T; Tanemura A; Ito S; Abe Y; Sumikawa Y; Yoshikawa M; Suzuki K; Yagami A; Masui Y; Ito A; Matsunaga K
    J Dermatol; 2021 Jul; 48(7):969-978. PubMed ID: 33951216
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RD-pheomelanin and covalent binding with thiol proteins.
    Ito S; Okura M; Nakanishi Y; Ojika M; Wakamatsu K; Yamashita T
    Pigment Cell Melanoma Res; 2015 May; 28(3):295-306. PubMed ID: 25713930
    [TBL] [Abstract][Full Text] [Related]  

  • 19. T-Cell Responses to Tyrosinase-Derived Self-Peptides in Patients with Leukoderma Induced by Rhododendrol: Implications for Immunotherapy Targeting Melanoma.
    Takagi R; Kawano M; Nakamura K; Tsuchida T; Matsushita S
    Dermatology; 2016; 232(1):44-9. PubMed ID: 26613259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Copper chelation by d-penicillamine alleviates melanocyte death induced by rhododendrol without inhibiting tyrosinase.
    Nagatani K; Abe Y; Homma T; Fujii J; Suzuki T
    Biochem Biophys Res Commun; 2023 Jun; 663():71-77. PubMed ID: 37119768
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.