BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

338 related articles for article (PubMed ID: 25726464)

  • 1. Using reweighted pulling simulations to characterize conformational changes in riboswitches.
    Di Palma F; Colizzi F; Bussi G
    Methods Enzymol; 2015; 553():139-62. PubMed ID: 25726464
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer.
    Bao L; Wang J; Xiao Y
    Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
    Di Palma F; Colizzi F; Bussi G
    RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sequence-dependent folding landscapes of adenine riboswitch aptamers.
    Lin JC; Hyeon C; Thirumalai D
    Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations.
    Hu G; Ma A; Wang J
    J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding.
    Petrone PM; Dewhurst J; Tommasi R; Whitehead L; Pomerantz AK
    J Mol Graph Model; 2011 Sep; 30():179-85. PubMed ID: 21831681
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Exploring the Binding Process of Cognate Ligand to Add Adenine Riboswitch Aptamer by Using Explicit Solvent Molecular Dynamics (MD) Simulation.
    Bao L; Xiao Y
    Methods Mol Biol; 2023; 2568():103-122. PubMed ID: 36227564
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation.
    Gong Z; Zhao Y; Chen C; Xiao Y
    J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158
    [TBL] [Abstract][Full Text] [Related]  

  • 10. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch.
    Sharma M; Bulusu G; Mitra A
    RNA; 2009 Sep; 15(9):1673-92. PubMed ID: 19625387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch.
    Hu G; Li H; Xu S; Wang J
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study.
    Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR
    J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational Methods for Modeling Aptamers and Designing Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain.
    Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H
    RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model.
    Li C; Lv D; Zhang L; Yang F; Wang C; Su J; Zhang Y
    J Chem Phys; 2016 Jul; 145(1):014104. PubMed ID: 27394096
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of the adenine ligand on the stabilization of the secondary and tertiary interactions in the adenine riboswitch.
    Priyakumar UD; MacKerell AD
    J Mol Biol; 2010 Mar; 396(5):1422-38. PubMed ID: 20026131
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study.
    Allnér O; Nilsson L; Villa A
    RNA; 2013 Jul; 19(7):916-26. PubMed ID: 23716711
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relative stability of helices determines the folding landscape of adenine riboswitch aptamers.
    Lin JC; Thirumalai D
    J Am Chem Soc; 2008 Oct; 130(43):14080-1. PubMed ID: 18828635
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches.
    Lin JC; Yoon J; Hyeon C; Thirumalai D
    Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.