These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
341 related articles for article (PubMed ID: 25726464)
1. Using reweighted pulling simulations to characterize conformational changes in riboswitches. Di Palma F; Colizzi F; Bussi G Methods Enzymol; 2015; 553():139-62. PubMed ID: 25726464 [TBL] [Abstract][Full Text] [Related]
2. Molecular dynamics simulation of the binding process of ligands to the add adenine riboswitch aptamer. Bao L; Wang J; Xiao Y Phys Rev E; 2019 Aug; 100(2-1):022412. PubMed ID: 31574664 [TBL] [Abstract][Full Text] [Related]
3. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch. Di Palma F; Colizzi F; Bussi G RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105 [TBL] [Abstract][Full Text] [Related]
4. Sequence-dependent folding landscapes of adenine riboswitch aptamers. Lin JC; Hyeon C; Thirumalai D Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448 [TBL] [Abstract][Full Text] [Related]
5. The dynamic nature of RNA as key to understanding riboswitch mechanisms. Haller A; Soulière MF; Micura R Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902 [TBL] [Abstract][Full Text] [Related]
6. Ligand Selectivity Mechanism and Conformational Changes in Guanine Riboswitch by Molecular Dynamics Simulations and Free Energy Calculations. Hu G; Ma A; Wang J J Chem Inf Model; 2017 Apr; 57(4):918-928. PubMed ID: 28345904 [TBL] [Abstract][Full Text] [Related]
7. Atomic-scale characterization of conformational changes in the preQ₁ riboswitch aptamer upon ligand binding. Petrone PM; Dewhurst J; Tommasi R; Whitehead L; Pomerantz AK J Mol Graph Model; 2011 Sep; 30():179-85. PubMed ID: 21831681 [TBL] [Abstract][Full Text] [Related]
8. Exploring the Binding Process of Cognate Ligand to Add Adenine Riboswitch Aptamer by Using Explicit Solvent Molecular Dynamics (MD) Simulation. Bao L; Xiao Y Methods Mol Biol; 2023; 2568():103-122. PubMed ID: 36227564 [TBL] [Abstract][Full Text] [Related]
9. Role of ligand binding in structural organization of add A-riboswitch aptamer: a molecular dynamics simulation. Gong Z; Zhao Y; Chen C; Xiao Y J Biomol Struct Dyn; 2011 Oct; 29(2):403-16. PubMed ID: 21875158 [TBL] [Abstract][Full Text] [Related]
10. MD simulations of ligand-bound and ligand-free aptamer: molecular level insights into the binding and switching mechanism of the add A-riboswitch. Sharma M; Bulusu G; Mitra A RNA; 2009 Sep; 15(9):1673-92. PubMed ID: 19625387 [TBL] [Abstract][Full Text] [Related]
11. Thermodynamic and kinetic folding of riboswitches. Badelt S; Hammer S; Flamm C; Hofacker IL Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466 [TBL] [Abstract][Full Text] [Related]
12. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch. Hu G; Li H; Xu S; Wang J Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940 [TBL] [Abstract][Full Text] [Related]
13. Structural insights into the interactions of xpt riboswitch with novel guanine analogues: a molecular dynamics simulation study. Jain SS; Sonavane UB; Uppuladinne MV; McLaughlin EC; Wang W; Black S; Joshi RR J Biomol Struct Dyn; 2015; 33(2):234-43. PubMed ID: 24404773 [TBL] [Abstract][Full Text] [Related]
14. Computational Methods for Modeling Aptamers and Designing Riboswitches. Gong S; Wang Y; Wang Z; Zhang W Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090 [TBL] [Abstract][Full Text] [Related]
15. The importance of helix P1 stability for structural pre-organization and ligand binding affinity of the adenine riboswitch aptamer domain. Nozinovic S; Reining A; Kim YB; Noeske J; Schlepckow K; Wöhnert J; Schwalbe H RNA Biol; 2014; 11(5):655-6. PubMed ID: 24921630 [TBL] [Abstract][Full Text] [Related]
16. Approach to the unfolding and folding dynamics of add A-riboswitch upon adenine dissociation using a coarse-grained elastic network model. Li C; Lv D; Zhang L; Yang F; Wang C; Su J; Zhang Y J Chem Phys; 2016 Jul; 145(1):014104. PubMed ID: 27394096 [TBL] [Abstract][Full Text] [Related]
17. Role of the adenine ligand on the stabilization of the secondary and tertiary interactions in the adenine riboswitch. Priyakumar UD; MacKerell AD J Mol Biol; 2010 Mar; 396(5):1422-38. PubMed ID: 20026131 [TBL] [Abstract][Full Text] [Related]
18. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study. Allnér O; Nilsson L; Villa A RNA; 2013 Jul; 19(7):916-26. PubMed ID: 23716711 [TBL] [Abstract][Full Text] [Related]
19. Relative stability of helices determines the folding landscape of adenine riboswitch aptamers. Lin JC; Thirumalai D J Am Chem Soc; 2008 Oct; 130(43):14080-1. PubMed ID: 18828635 [TBL] [Abstract][Full Text] [Related]
20. Using simulations and kinetic network models to reveal the dynamics and functions of riboswitches. Lin JC; Yoon J; Hyeon C; Thirumalai D Methods Enzymol; 2015; 553():235-58. PubMed ID: 25726468 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]