These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 25726465)

  • 21. Loop-loop interaction in an adenine-sensing riboswitch: a molecular dynamics study.
    Allnér O; Nilsson L; Villa A
    RNA; 2013 Jul; 19(7):916-26. PubMed ID: 23716711
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of Mg
    Hetzke T; Vogel M; Gophane DB; Weigand JE; Suess B; Sigurdsson ST; Prisner TF
    RNA; 2019 Jan; 25(1):158-167. PubMed ID: 30337459
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Magnesium ions mitigate metastable states in the regulatory landscape of mRNA elements.
    Ding E; Chaudhury SN; Prajapati JD; Onuchic JN; Sanbonmatsu KY
    RNA; 2024 Jul; 30(8):992-1010. PubMed ID: 38777381
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unveiling Putative Excited State and Transmission of Binding Information in the Fluoride Riboswitch.
    Hu G; Yu X; Li Z
    J Chem Inf Model; 2024 Oct; 64(19):7555-7564. PubMed ID: 39342653
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tuning riboswitch-mediated gene regulation by rational control of aptamer ligand binding properties.
    Rode AB; Endoh T; Sugimoto N
    Angew Chem Int Ed Engl; 2015 Jan; 54(3):905-9. PubMed ID: 25470002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Ligand-modulated folding of the full-length adenine riboswitch probed by NMR and single-molecule FRET spectroscopy.
    Warhaut S; Mertinkus KR; Höllthaler P; Fürtig B; Heilemann M; Hengesbach M; Schwalbe H
    Nucleic Acids Res; 2017 May; 45(9):5512-5522. PubMed ID: 28204648
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Multivector fluorescence analysis of the xpt guanine riboswitch aptamer domain and the conformational role of guanine.
    Brenner MD; Scanlan MS; Nahas MK; Ha T; Silverman SK
    Biochemistry; 2010 Mar; 49(8):1596-605. PubMed ID: 20108980
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Ligand-induced stabilization of the aptamer terminal helix in the add adenine riboswitch.
    Di Palma F; Colizzi F; Bussi G
    RNA; 2013 Nov; 19(11):1517-24. PubMed ID: 24051105
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Sequence-dependent folding landscapes of adenine riboswitch aptamers.
    Lin JC; Hyeon C; Thirumalai D
    Phys Chem Chem Phys; 2014 Apr; 16(14):6376-82. PubMed ID: 24366448
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational Methods for Modeling Aptamers and Designing Riboswitches.
    Gong S; Wang Y; Wang Z; Zhang W
    Int J Mol Sci; 2017 Nov; 18(11):. PubMed ID: 29149090
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The expression platform and the aptamer: cooperativity between Mg2+ and ligand in the SAM-I riboswitch.
    Hennelly SP; Novikova IV; Sanbonmatsu KY
    Nucleic Acids Res; 2013 Feb; 41(3):1922-35. PubMed ID: 23258703
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vitro selection of conformational probes for riboswitches.
    Mayer G; Famulok M
    Methods Mol Biol; 2009; 540():291-300. PubMed ID: 19381568
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Cooperative and directional folding of the preQ1 riboswitch aptamer domain.
    Feng J; Walter NG; Brooks CL
    J Am Chem Soc; 2011 Mar; 133(12):4196-9. PubMed ID: 21375305
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Ligand Binding Mechanism and Its Relationship with Conformational Changes in Adenine Riboswitch.
    Hu G; Li H; Xu S; Wang J
    Int J Mol Sci; 2020 Mar; 21(6):. PubMed ID: 32168940
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mechanisms for differentiation between cognate and near-cognate ligands by purine riboswitches.
    Wacker A; Buck J; Richter C; Schwalbe H; Wöhnert J
    RNA Biol; 2012 May; 9(5):672-80. PubMed ID: 22647526
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conformational Dynamics of thiM Riboswitch To Understand the Gene Regulation Mechanism Using Markov State Modeling and the Residual Fluctuation Network Approach.
    Kesherwani M; N H V K; Velmurugan D
    J Chem Inf Model; 2018 Aug; 58(8):1638-1651. PubMed ID: 29939019
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Guanidine-II aptamer conformations and ligand binding modes through the lens of molecular simulation.
    Steuer J; Kukharenko O; Riedmiller K; Hartig JS; Peter C
    Nucleic Acids Res; 2021 Aug; 49(14):7954-7965. PubMed ID: 34233001
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring the Binding Process of Cognate Ligand to Add Adenine Riboswitch Aptamer by Using Explicit Solvent Molecular Dynamics (MD) Simulation.
    Bao L; Xiao Y
    Methods Mol Biol; 2023; 2568():103-122. PubMed ID: 36227564
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Cooperation between Magnesium and Metabolite Controls Collapse of the SAM-I Riboswitch.
    Roy S; Onuchic JN; Sanbonmatsu KY
    Biophys J; 2017 Jul; 113(2):348-359. PubMed ID: 28746845
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Atomistic details of the ligand discrimination mechanism of S(MK)/SAM-III riboswitch.
    Priyakumar UD
    J Phys Chem B; 2010 Aug; 114(30):9920-5. PubMed ID: 20614931
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.