These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 25726469)

  • 1. Computational methods for prediction of RNA interactions with metal ions and small organic ligands.
    Philips A; Łach G; Bujnicki JM
    Methods Enzymol; 2015; 553():261-85. PubMed ID: 25726469
    [TBL] [Abstract][Full Text] [Related]  

  • 2. MetalionRNA: computational predictor of metal-binding sites in RNA structures.
    Philips A; Milanowska K; Lach G; Boniecki M; Rother K; Bujnicki JM
    Bioinformatics; 2012 Jan; 28(2):198-205. PubMed ID: 22110243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. LigandRNA: computational predictor of RNA-ligand interactions.
    Philips A; Milanowska K; Lach G; Bujnicki JM
    RNA; 2013 Dec; 19(12):1605-16. PubMed ID: 24145824
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches.
    Purzycka KJ; Popenda M; Szachniuk M; Antczak M; Lukasiak P; Blazewicz J; Adamiak RW
    Methods Enzymol; 2015; 553():3-34. PubMed ID: 25726459
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic and kinetic folding of riboswitches.
    Badelt S; Hammer S; Flamm C; Hofacker IL
    Methods Enzymol; 2015; 553():193-213. PubMed ID: 25726466
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA 3D Structure Modeling by Combination of Template-Based Method ModeRNA, Template-Free Folding with SimRNA, and Refinement with QRNAS.
    Piatkowski P; Kasprzak JM; Kumar D; Magnus M; Chojnowski G; Bujnicki JM
    Methods Mol Biol; 2016; 1490():217-35. PubMed ID: 27665602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MeRNA: a database of metal ion binding sites in RNA structures.
    Stefan LR; Zhang R; Levitan AG; Hendrix DK; Brenner SE; Holbrook SR
    Nucleic Acids Res; 2006 Jan; 34(Database issue):D131-4. PubMed ID: 16381830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational prediction of riboswitch tertiary structures including pseudoknots by RAGTOP: a hierarchical graph sampling approach.
    Kim N; Zahran M; Schlick T
    Methods Enzymol; 2015; 553():115-35. PubMed ID: 25726463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Bioinformatic analysis of riboswitch structures uncovers variant classes with altered ligand specificity.
    Weinberg Z; Nelson JW; Lünse CE; Sherlock ME; Breaker RR
    Proc Natl Acad Sci U S A; 2017 Mar; 114(11):E2077-E2085. PubMed ID: 28265071
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using reweighted pulling simulations to characterize conformational changes in riboswitches.
    Di Palma F; Colizzi F; Bussi G
    Methods Enzymol; 2015; 553():139-62. PubMed ID: 25726464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The ligand-free state of the TPP riboswitch: a partially folded RNA structure.
    Ali M; Lipfert J; Seifert S; Herschlag D; Doniach S
    J Mol Biol; 2010 Feb; 396(1):153-65. PubMed ID: 19925806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [The adenine riboswitch: a new gene regulation mechanism].
    Lemay JF; Lafontaine DA
    Med Sci (Paris); 2006 Dec; 22(12):1053-9. PubMed ID: 17156726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational prediction of riboswitches.
    Clote P
    Methods Enzymol; 2015; 553():287-312. PubMed ID: 25726470
    [TBL] [Abstract][Full Text] [Related]  

  • 15. AnnapuRNA: A scoring function for predicting RNA-small molecule binding poses.
    Stefaniak F; Bujnicki JM
    PLoS Comput Biol; 2021 Feb; 17(2):e1008309. PubMed ID: 33524009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structures of RNA switches: insight into molecular recognition and tertiary structure.
    Schwalbe H; Buck J; Fürtig B; Noeske J; Wöhnert J
    Angew Chem Int Ed Engl; 2007; 46(8):1212-9. PubMed ID: 17226886
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Applicability of a computational design approach for synthetic riboswitches.
    Domin G; Findeiß S; Wachsmuth M; Will S; Stadler PF; Mörl M
    Nucleic Acids Res; 2017 Apr; 45(7):4108-4119. PubMed ID: 27994029
    [TBL] [Abstract][Full Text] [Related]  

  • 18. RNA-Puzzles Round III: 3D RNA structure prediction of five riboswitches and one ribozyme.
    Miao Z; Adamiak RW; Antczak M; Batey RT; Becka AJ; Biesiada M; Boniecki MJ; Bujnicki JM; Chen SJ; Cheng CY; Chou FC; Ferré-D'Amaré AR; Das R; Dawson WK; Ding F; Dokholyan NV; Dunin-Horkawicz S; Geniesse C; Kappel K; Kladwang W; Krokhotin A; Łach GE; Major F; Mann TH; Magnus M; Pachulska-Wieczorek K; Patel DJ; Piccirilli JA; Popenda M; Purzycka KJ; Ren A; Rice GM; Santalucia J; Sarzynska J; Szachniuk M; Tandon A; Trausch JJ; Tian S; Wang J; Weeks KM; Williams B; Xiao Y; Xu X; Zhang D; Zok T; Westhof E
    RNA; 2017 May; 23(5):655-672. PubMed ID: 28138060
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Binding site preorganization and ligand discrimination in the purine riboswitch.
    Sund J; Lind C; Åqvist J
    J Phys Chem B; 2015 Jan; 119(3):773-82. PubMed ID: 25014157
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-line probing analysis of riboswitches.
    Regulski EE; Breaker RR
    Methods Mol Biol; 2008; 419():53-67. PubMed ID: 18369975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.