These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 25726470)

  • 21. Dynamic programming algorithms for RNA structure prediction with binding sites.
    Poolsap U; Kato Y; Akutsu T
    Pac Symp Biocomput; 2010; ():98-107. PubMed ID: 19908362
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Applicability of a computational design approach for synthetic riboswitches.
    Domin G; Findeiß S; Wachsmuth M; Will S; Stadler PF; Mörl M
    Nucleic Acids Res; 2017 Apr; 45(7):4108-4119. PubMed ID: 27994029
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Riboswitch diversity and distribution.
    McCown PJ; Corbino KA; Stav S; Sherlock ME; Breaker RR
    RNA; 2017 Jul; 23(7):995-1011. PubMed ID: 28396576
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Thiamine pyrophosphate riboswitch in some representative plant species: a bioinformatics study.
    Yadav S; Swati D; Chandrasekharan H
    J Comput Biol; 2015 Jan; 22(1):1-9. PubMed ID: 25243980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Prediction and design of DNA and RNA structures.
    Andersen ES
    N Biotechnol; 2010 Jul; 27(3):184-93. PubMed ID: 20193785
    [TBL] [Abstract][Full Text] [Related]  

  • 26. STRAL: progressive alignment of non-coding RNA using base pairing probability vectors in quadratic time.
    Dalli D; Wilm A; Mainz I; Steger G
    Bioinformatics; 2006 Jul; 22(13):1593-9. PubMed ID: 16613908
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Automated 3D RNA structure prediction using the RNAComposer method for riboswitches.
    Purzycka KJ; Popenda M; Szachniuk M; Antczak M; Lukasiak P; Blazewicz J; Adamiak RW
    Methods Enzymol; 2015; 553():3-34. PubMed ID: 25726459
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Structural prediction of RNA switches using conditional base-pair probabilities.
    Manzourolajdad A; Spouge JL
    PLoS One; 2019; 14(6):e0217625. PubMed ID: 31188853
    [TBL] [Abstract][Full Text] [Related]  

  • 29. STR2: a structure to string approach for locating G-box riboswitch shapes in pre-selected genes.
    Bergig O; Barash D; Nudler E; Kedem K
    In Silico Biol; 2004; 4(4):593-604. PubMed ID: 15752075
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In-line probing analysis of riboswitches.
    Regulski EE; Breaker RR
    Methods Mol Biol; 2008; 419():53-67. PubMed ID: 18369975
    [TBL] [Abstract][Full Text] [Related]  

  • 31. [The adenine riboswitch: a new gene regulation mechanism].
    Lemay JF; Lafontaine DA
    Med Sci (Paris); 2006 Dec; 22(12):1053-9. PubMed ID: 17156726
    [TBL] [Abstract][Full Text] [Related]  

  • 32. An Efficient Minimum Free Energy Structure-Based Search Method for Riboswitch Identification Based on Inverse RNA Folding.
    Drory Retwitzer M; Kifer I; Sengupta S; Yakhini Z; Barash D
    PLoS One; 2015; 10(7):e0134262. PubMed ID: 26230932
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Energy-based RNA consensus secondary structure prediction in multiple sequence alignments.
    Washietl S; Bernhart SH; Kellis M
    Methods Mol Biol; 2014; 1097():125-41. PubMed ID: 24639158
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The dynamic nature of RNA as key to understanding riboswitch mechanisms.
    Haller A; Soulière MF; Micura R
    Acc Chem Res; 2011 Dec; 44(12):1339-48. PubMed ID: 21678902
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Using the fast fourier transform to accelerate the computational search for RNA conformational switches.
    Senter E; Sheikh S; Dotu I; Ponty Y; Clote P
    PLoS One; 2012; 7(12):e50506. PubMed ID: 23284639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An RNA folding algorithm including pseudoknots based on dynamic weighted matching.
    Liu H; Xu D; Shao J; Wang Y
    Comput Biol Chem; 2006 Feb; 30(1):72-6. PubMed ID: 16321572
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Application of supervised machine learning algorithms for the classification of regulatory RNA riboswitches.
    Singh S; Singh R
    Brief Funct Genomics; 2017 Mar; 16(2):99-105. PubMed ID: 27040116
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Folding and finding RNA secondary structure.
    Mathews DH; Moss WN; Turner DH
    Cold Spring Harb Perspect Biol; 2010 Dec; 2(12):a003665. PubMed ID: 20685845
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Preparation and crystallization of riboswitch-ligand complexes.
    Pikovskaya O; Serganov AA; Polonskaia A; Serganov A; Patel DJ
    Methods Mol Biol; 2009; 540():115-28. PubMed ID: 19381556
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.
    Washietl S; Hofacker IL; Lukasser M; Hüttenhofer A; Stadler PF
    Nat Biotechnol; 2005 Nov; 23(11):1383-90. PubMed ID: 16273071
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.