These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
323 related articles for article (PubMed ID: 25726580)
1. [Improving 3-dehydroshikimate production by metabolically engineered Escherichia coli]. Yuan F; Chen W; Jia S; Wang Q Sheng Wu Gong Cheng Xue Bao; 2014 Oct; 30(10):1549-60. PubMed ID: 25726580 [TBL] [Abstract][Full Text] [Related]
2. Fed-batch fermentor synthesis of 3-dehydroshikimic acid using recombinant Escherichia coli. Li K; Mikola MR; Draths KM; Worden RM; Frost JW Biotechnol Bioeng; 1999 Jul; 64(1):61-73. PubMed ID: 10397840 [TBL] [Abstract][Full Text] [Related]
3. Pulse experiments as a prerequisite for the quantification of in vivo enzyme kinetics in aromatic amino acid pathway of Escherichia coli. Schmitz M; Hirsch E; Bongaerts J; Takors R Biotechnol Prog; 2002; 18(5):935-41. PubMed ID: 12363343 [TBL] [Abstract][Full Text] [Related]
4. Metabolic Engineering of Escherichia coli for Efficient Production of 2-Pyrone-4,6-dicarboxylic Acid from Glucose. Luo ZW; Kim WJ; Lee SY ACS Synth Biol; 2018 Sep; 7(9):2296-2307. PubMed ID: 30096230 [TBL] [Abstract][Full Text] [Related]
5. Metabolic engineering of Escherichia coli for improving shikimate synthesis from glucose. Chen X; Li M; Zhou L; Shen W; Algasan G; Fan Y; Wang Z Bioresour Technol; 2014 Aug; 166():64-71. PubMed ID: 24905044 [TBL] [Abstract][Full Text] [Related]
6. Metabolic network rewiring and temperature-dependent regulation for enhanced 3-dehydroshikimate production in Escherichia coli. Liu D; Wang L; Ma L; Wang X; Li S; Zhou J Bioresour Technol; 2024 Nov; 412():131403. PubMed ID: 39222859 [TBL] [Abstract][Full Text] [Related]
7. Production of cinnamic and p-hydroxycinnamic acid from sugar mixtures with engineered Escherichia coli. Vargas-Tah A; Martínez LM; Hernández-Chávez G; Rocha M; Martínez A; Bolívar F; Gosset G Microb Cell Fact; 2015 Jan; 14():6. PubMed ID: 25592545 [TBL] [Abstract][Full Text] [Related]
8. Altered glucose transport and shikimate pathway product yields in E. coli. Yi J; Draths KM; Li K; Frost JW Biotechnol Prog; 2003; 19(5):1450-9. PubMed ID: 14524706 [TBL] [Abstract][Full Text] [Related]
10. Metabolic engineering of Escherichia coli for improving L-3,4-dihydroxyphenylalanine (L-DOPA) synthesis from glucose. Muñoz AJ; Hernández-Chávez G; de Anda R; Martínez A; Bolívar F; Gosset G J Ind Microbiol Biotechnol; 2011 Nov; 38(11):1845-52. PubMed ID: 21512819 [TBL] [Abstract][Full Text] [Related]
11. Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Chandran SS; Yi J; Draths KM; von Daeniken R; Weber W; Frost JW Biotechnol Prog; 2003; 19(3):808-14. PubMed ID: 12790643 [TBL] [Abstract][Full Text] [Related]
12. Pathway engineering for the production of aromatic compounds in Escherichia coli. Flores N; Xiao J; Berry A; Bolivar F; Valle F Nat Biotechnol; 1996 May; 14(5):620-3. PubMed ID: 9630954 [TBL] [Abstract][Full Text] [Related]
13. [Co-expressions of phosphoenolpyruvate synthetase A (ppsA) and transketolase A (tktA) genes of Escherichia coli]. Li YH; Liu Y; Wang SC; Tong ZY; Xu QS Sheng Wu Gong Cheng Xue Bao; 2003 May; 19(3):301-6. PubMed ID: 15969011 [TBL] [Abstract][Full Text] [Related]
14. Directed evolution of 2-keto-3-deoxy-6-phosphogalactonate aldolase to replace 3-deoxy-D-arabino-heptulosonic acid 7-phosphate synthase. Ran N; Frost JW J Am Chem Soc; 2007 May; 129(19):6130-9. PubMed ID: 17451239 [TBL] [Abstract][Full Text] [Related]
15. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. Syukur Purwanto H; Kang MS; Ferrer L; Han SS; Lee JY; Kim HS; Lee JH J Biotechnol; 2018 Sep; 282():92-100. PubMed ID: 30031819 [TBL] [Abstract][Full Text] [Related]
16. Site-specific integration and constitutive expression of key genes into Escherichia coli chromosome increases shikimic acid yields. Liu X; Lin J; Hu H; Zhou B; Zhu B Enzyme Microb Technol; 2016 Jan; 82():96-104. PubMed ID: 26672454 [TBL] [Abstract][Full Text] [Related]
17. [Rational design and construction of an overproducing shikimic acid Escherichia coli by metabolic engineering]. Li M; Chen X; Zhou L; Shen W; Fan Y; Wang Z Sheng Wu Gong Cheng Xue Bao; 2013 Jan; 29(1):56-67. PubMed ID: 23631118 [TBL] [Abstract][Full Text] [Related]
18. The Role of the ydiB Gene, Which Encodes Quinate/Shikimate Dehydrogenase, in the Production of Quinic, Dehydroshikimic and Shikimic Acids in a PTS- Strain of Escherichia coli. García S; Flores N; De Anda R; Hernández G; Gosset G; Bolívar F; Escalante A J Mol Microbiol Biotechnol; 2017; 27(1):11-21. PubMed ID: 27855390 [TBL] [Abstract][Full Text] [Related]
19. Pathway construction and metabolic engineering for fermentative production of β-alanine in Escherichia coli. Zou X; Guo L; Huang L; Li M; Zhang S; Yang A; Zhang Y; Zhu L; Zhang H; Zhang J; Feng Z Appl Microbiol Biotechnol; 2020 Mar; 104(6):2545-2559. PubMed ID: 31989219 [TBL] [Abstract][Full Text] [Related]
20. Artificial cell factory design for shikimate production in Escherichia coli. Lee HN; Seo SY; Kim HJ; Park JH; Park E; Choi SS; Lee SJ; Kim ES J Ind Microbiol Biotechnol; 2021 Dec; 48(9-10):. PubMed ID: 34227672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]