BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25726691)

  • 1. Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency.
    Brainard GC; Hanifin JP; Warfield B; Stone MK; James ME; Ayers M; Kubey A; Byrne B; Rollag M
    J Pineal Res; 2015 Apr; 58(3):352-61. PubMed ID: 25726691
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Predicting human nocturnal nonvisual responses to monochromatic and polychromatic light with a melanopsin photosensitivity function.
    Revell VL; Barrett DC; Schlangen LJ; Skene DJ
    Chronobiol Int; 2010 Oct; 27(9-10):1762-77. PubMed ID: 20969522
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sensitivity of the human circadian system to short-wavelength (420-nm) light.
    Brainard GC; Sliney D; Hanifin JP; Glickman G; Byrne B; Greeson JM; Jasser S; Gerner E; Rollag MD
    J Biol Rhythms; 2008 Oct; 23(5):379-86. PubMed ID: 18838601
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-induced melatonin suppression in humans with polychromatic and monochromatic light.
    Revell VL; Skene DJ
    Chronobiol Int; 2007; 24(6):1125-37. PubMed ID: 18075803
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-wavelength attenuated polychromatic white light during work at night: limited melatonin suppression without substantial decline of alertness.
    van de Werken M; Giménez MC; de Vries B; Beersma DG; Gordijn MC
    Chronobiol Int; 2013 Aug; 30(7):843-54. PubMed ID: 23705821
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Action spectrum for melatonin regulation in humans: evidence for a novel circadian photoreceptor.
    Brainard GC; Hanifin JP; Greeson JM; Byrne B; Glickman G; Gerner E; Rollag MD
    J Neurosci; 2001 Aug; 21(16):6405-12. PubMed ID: 11487664
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An action spectrum for melatonin suppression: evidence for a novel non-rod, non-cone photoreceptor system in humans.
    Thapan K; Arendt J; Skene DJ
    J Physiol; 2001 Aug; 535(Pt 1):261-7. PubMed ID: 11507175
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans.
    West KE; Jablonski MR; Warfield B; Cecil KS; James M; Ayers MA; Maida J; Bowen C; Sliney DH; Rollag MD; Hanifin JP; Brainard GC
    J Appl Physiol (1985); 2011 Mar; 110(3):619-26. PubMed ID: 21164152
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-intensity red light suppresses melatonin.
    Hanifin JP; Stewart KT; Smith P; Tanner R; Rollag M; Brainard GC
    Chronobiol Int; 2006; 23(1-2):251-68. PubMed ID: 16687299
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The suppression of nocturnal pineal melatonin in the Syrian hamster: dose-response curves at 500 and 360 nm.
    Podolin PL; Rollag MD; Brainard GC
    Endocrinology; 1987 Jul; 121(1):266-70. PubMed ID: 3595519
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Randomized trial of polychromatic blue-enriched light for circadian phase shifting, melatonin suppression, and alerting responses.
    Hanifin JP; Lockley SW; Cecil K; West K; Jablonski M; Warfield B; James M; Ayers M; Byrne B; Gerner E; Pineda C; Rollag M; Brainard GC
    Physiol Behav; 2019 Jan; 198():57-66. PubMed ID: 30296404
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling melanopsin-mediated effects of light on circadian phase, melatonin suppression, and subjective sleepiness.
    Tekieh T; Lockley SW; Robinson PA; McCloskey S; Zobaer MS; Postnova S
    J Pineal Res; 2020 Oct; 69(3):e12681. PubMed ID: 32640090
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Toward optimizing lighting as a countermeasure to sleep and circadian disruption in space flight.
    Fucci RL; Gardner J; Hanifin JP; Jasser S; Byrne B; Gerner E; Rollag M; Brainard GC
    Acta Astronaut; 2005; 56(9-12):1017-24. PubMed ID: 15838948
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of a chronic reduction of short-wavelength light input on melatonin and sleep patterns in humans: evidence for adaptation.
    Giménez MC; Beersma DG; Bollen P; van der Linden ML; Gordijn MC
    Chronobiol Int; 2014 Jun; 31(5):690-7. PubMed ID: 24597610
    [TBL] [Abstract][Full Text] [Related]  

  • 15. S-cone contribution to the acute melatonin suppression response in humans.
    Brown TM; Thapan K; Arendt J; Revell VL; Skene DJ
    J Pineal Res; 2021 Aug; 71(1):e12719. PubMed ID: 33512714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short wavelength light filtering by the natural human lens and IOLs -- implications for entrainment of circadian rhythm.
    Brøndsted AE; Lundeman JH; Kessel L
    Acta Ophthalmol; 2013 Feb; 91(1):52-7. PubMed ID: 22136468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High sensitivity of the human circadian melatonin rhythm to resetting by short wavelength light.
    Lockley SW; Brainard GC; Czeisler CA
    J Clin Endocrinol Metab; 2003 Sep; 88(9):4502-5. PubMed ID: 12970330
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Circadian Potency Spectrum with Extended Exposure to Polychromatic White LED Light under Workplace Conditions.
    Moore-Ede M; Heitmann A; Guttkuhn R
    J Biol Rhythms; 2020 Aug; 35(4):405-415. PubMed ID: 32539484
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of short wavelength control in polychromatic light sources on nocturnal melatonin secretion.
    Kozaki T; Koga S; Toda N; Noguchi H; Yasukouchi A
    Neurosci Lett; 2008 Jul; 439(3):256-9. PubMed ID: 18534755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preliminary evidence for spectral opponency in the suppression of melatonin by light in humans.
    Figueiro MG; Bullough JD; Parsons RH; Rea MS
    Neuroreport; 2004 Feb; 15(2):313-6. PubMed ID: 15076759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.