These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

242 related articles for article (PubMed ID: 25726691)

  • 21. The spectral sensitivity of human circadian phase resetting and melatonin suppression to light changes dynamically with light duration.
    St Hilaire MA; Ámundadóttir ML; Rahman SA; Rajaratnam SMW; Rüger M; Brainard GC; Czeisler CA; Andersen M; Gooley JJ; Lockley SW
    Proc Natl Acad Sci U S A; 2022 Dec; 119(51):e2205301119. PubMed ID: 36508661
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Circadian effectiveness of two polychromatic lights in suppressing human nocturnal melatonin.
    Figueiro MG; Rea MS; Bullough JD
    Neurosci Lett; 2006 Oct; 406(3):293-7. PubMed ID: 16930839
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Spectral sensitivity of melatonin suppression in the zebrafish pineal gland.
    Ziv L; Tovin A; Strasser D; Gothilf Y
    Exp Eye Res; 2007 Jan; 84(1):92-9. PubMed ID: 17067577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Light-induced melatonin suppression: age-related reduction in response to short wavelength light.
    Herljevic M; Middleton B; Thapan K; Skene DJ
    Exp Gerontol; 2005 Mar; 40(3):237-42. PubMed ID: 15763401
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Retinal mechanisms determine the subadditive response to polychromatic light by the human circadian system.
    Figueiro MG; Bierman A; Rea MS
    Neurosci Lett; 2008 Jun; 438(2):242-5. PubMed ID: 18479818
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spectral responses of the human circadian system depend on the irradiance and duration of exposure to light.
    Gooley JJ; Rajaratnam SM; Brainard GC; Kronauer RE; Czeisler CA; Lockley SW
    Sci Transl Med; 2010 May; 2(31):31ra33. PubMed ID: 20463367
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Nocturnal Melatonin Suppression by Adolescents and Adults for Different Levels, Spectra, and Durations of Light Exposure.
    Nagare R; Rea MS; Plitnick B; Figueiro MG
    J Biol Rhythms; 2019 Apr; 34(2):178-194. PubMed ID: 30803301
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception.
    Mainster MA
    Br J Ophthalmol; 2006 Jun; 90(6):784-92. PubMed ID: 16714268
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Human nonvisual responses to simultaneous presentation of blue and red monochromatic light.
    Papamichael C; Skene DJ; Revell VL
    J Biol Rhythms; 2012 Feb; 27(1):70-8. PubMed ID: 22306975
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Dim light adaptation attenuates acute melatonin suppression in humans.
    Jasser SA; Hanifin JP; Rollag MD; Brainard GC
    J Biol Rhythms; 2006 Oct; 21(5):394-404. PubMed ID: 16998159
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of different colors of light on melatonin suppression and expression analysis of Aanat1 and melanopsin in the eye of a tropical damselfish.
    Takeuchi Y; Imamura S; Sawada Y; Hur SP; Takemura A
    Gen Comp Endocrinol; 2014 Aug; 204():158-65. PubMed ID: 24859252
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Phase advancing the human circadian clock with blue-enriched polychromatic light.
    Smith MR; Revell VL; Eastman CI
    Sleep Med; 2009 Mar; 10(3):287-94. PubMed ID: 18805055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human melatonin and alerting response to blue-enriched light depend on a polymorphism in the clock gene PER3.
    Chellappa SL; Viola AU; Schmidt C; Bachmann V; Gabel V; Maire M; Reichert CF; Valomon A; Götz T; Landolt HP; Cajochen C
    J Clin Endocrinol Metab; 2012 Mar; 97(3):E433-7. PubMed ID: 22188742
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Impact of Pupil Constriction on the Relationship Between Melanopic EDI and Melatonin Suppression in Young Adult Males.
    Schöllhorn I; Stefani O; Lucas RJ; Spitschan M; Epple C; Cajochen C
    J Biol Rhythms; 2024 Jun; 39(3):282-294. PubMed ID: 38348477
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systematic review of light exposure impact on human circadian rhythm.
    Tähkämö L; Partonen T; Pesonen AK
    Chronobiol Int; 2019 Feb; 36(2):151-170. PubMed ID: 30311830
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects of spectral tuning of evening ambient light on melatonin suppression, alertness and sleep.
    Rahman SA; St Hilaire MA; Lockley SW
    Physiol Behav; 2017 Aug; 177():221-229. PubMed ID: 28472667
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Spectral modulation attenuates molecular, endocrine, and neurobehavioral disruption induced by nocturnal light exposure.
    Rahman SA; Marcu S; Shapiro CM; Brown TJ; Casper RF
    Am J Physiol Endocrinol Metab; 2011 Mar; 300(3):E518-27. PubMed ID: 21177289
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Effect of light wavelength on suppression and phase delay of the melatonin rhythm.
    Wright HR; Lack LC
    Chronobiol Int; 2001 Sep; 18(5):801-8. PubMed ID: 11763987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Demonstration of additivity failure in human circadian phototransduction.
    Figueiro MG; Bullough JD; Bierman A; Rea MS
    Neuro Endocrinol Lett; 2005 Oct; 26(5):493-8. PubMed ID: 16264413
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Melatonin suppression is exquisitely sensitive to light and primarily driven by melanopsin in humans.
    Prayag AS; Najjar RP; Gronfier C
    J Pineal Res; 2019 May; 66(4):e12562. PubMed ID: 30697806
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.