These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

415 related articles for article (PubMed ID: 25726700)

  • 1. Dynamics of equilibrium folding and unfolding transitions of titin immunoglobulin domain under constant forces.
    Chen H; Yuan G; Winardhi RS; Yao M; Popa I; Fernandez JM; Yan J
    J Am Chem Soc; 2015 Mar; 137(10):3540-6. PubMed ID: 25726700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermodynamics of force-dependent folding and unfolding of small protein and nucleic acid structures.
    Yao M; Chen H; Yan J
    Integr Biol (Camb); 2015 Oct; 7(10):1154-60. PubMed ID: 25799983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Altered mechanical properties of titin immunoglobulin domain 27 in the presence of calcium.
    DuVall MM; Gifford JL; Amrein M; Herzog W
    Eur Biophys J; 2013 Apr; 42(4):301-7. PubMed ID: 23224300
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elasticity of the Transition State Leading to an Unexpected Mechanical Stabilization of Titin Immunoglobulin Domains.
    Yuan G; Le S; Yao M; Qian H; Zhou X; Yan J; Chen H
    Angew Chem Int Ed Engl; 2017 May; 56(20):5490-5493. PubMed ID: 28394039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The mechanical stability of immunoglobulin and fibronectin III domains in the muscle protein titin measured by atomic force microscopy.
    Rief M; Gautel M; Schemmel A; Gaub HE
    Biophys J; 1998 Dec; 75(6):3008-14. PubMed ID: 9826620
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A structure-based model fails to probe the mechanical unfolding pathways of the titin I27 domain.
    Kouza M; Hu CK; Li MS; Kolinski A
    J Chem Phys; 2013 Aug; 139(6):065103. PubMed ID: 23947893
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ising-like model for protein mechanical unfolding.
    Imparato A; Pelizzola A; Zamparo M
    Phys Rev Lett; 2007 Apr; 98(14):148102. PubMed ID: 17501316
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Titin domains progressively unfolded by force are homogenously distributed along the molecule.
    Bianco P; Mártonfalvi Z; Naftz K; Kőszegi D; Kellermayer M
    Biophys J; 2015 Jul; 109(2):340-5. PubMed ID: 26200869
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reversible unfolding of individual titin immunoglobulin domains by AFM.
    Rief M; Gautel M; Oesterhelt F; Fernandez JM; Gaub HE
    Science; 1997 May; 276(5315):1109-12. PubMed ID: 9148804
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Force generation by titin folding.
    Mártonfalvi Z; Bianco P; Naftz K; Ferenczy GG; Kellermayer M
    Protein Sci; 2017 Jul; 26(7):1380-1390. PubMed ID: 28097712
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of Secondary-Structure Folding on the Mutually Exclusive Folding Process of GL5/I27 Protein: Evidence from Molecular Dynamics Simulations.
    Wang Q; Wang Y; Chen G
    Int J Mol Sci; 2016 Nov; 17(11):. PubMed ID: 27886109
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-force transitions in single titin molecules reflect a memory of contractile history.
    Mártonfalvi Z; Bianco P; Linari M; Caremani M; Nagy A; Lombardi V; Kellermayer M
    J Cell Sci; 2014 Feb; 127(Pt 4):858-70. PubMed ID: 24357719
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical unfolding of a titin Ig domain: structure of unfolding intermediate revealed by combining AFM, molecular dynamics simulations, NMR and protein engineering.
    Fowler SB; Best RB; Toca Herrera JL; Rutherford TJ; Steward A; Paci E; Karplus M; Clarke J
    J Mol Biol; 2002 Sep; 322(4):841-9. PubMed ID: 12270718
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanical unfolding of a titin Ig domain: structure of transition state revealed by combining atomic force microscopy, protein engineering and molecular dynamics simulations.
    Best RB; Fowler SB; Herrera JL; Steward A; Paci E; Clarke J
    J Mol Biol; 2003 Jul; 330(4):867-77. PubMed ID: 12850153
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reversible unfolding of fibronectin type III and immunoglobulin domains provides the structural basis for stretch and elasticity of titin and fibronectin.
    Erickson HP
    Proc Natl Acad Sci U S A; 1994 Oct; 91(21):10114-8. PubMed ID: 7937847
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Simulated refolding of stretched titin immunoglobulin domains.
    Gao M; Lu H; Schulten K
    Biophys J; 2001 Oct; 81(4):2268-77. PubMed ID: 11566797
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steered molecular dynamics studies of titin I1 domain unfolding.
    Gao M; Wilmanns M; Schulten K
    Biophys J; 2002 Dec; 83(6):3435-45. PubMed ID: 12496110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monitoring Unfolding of Titin I27 Single and Bi Domain with High-Pressure NMR Spectroscopy.
    Herrada I; Barthe P; Vanheusden M; DeGuillen K; Mammri L; Delbecq S; Rico F; Roumestand C
    Biophys J; 2018 Jul; 115(2):341-352. PubMed ID: 30021109
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Measuring biological materials mechanics with atomic force microscopy - Mechanical unfolding of biopolymers.
    Gil-Redondo JC; Weber A; Toca-Herrera JL
    Microsc Res Tech; 2022 Aug; 85(8):3025-3036. PubMed ID: 35502131
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Viscoelastic study of the mechanical unfolding of a protein by AFM.
    Kawakami M; Byrne K; Brockwell DJ; Radford SE; Smith DA
    Biophys J; 2006 Jul; 91(2):L16-8. PubMed ID: 16698787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.