These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

237 related articles for article (PubMed ID: 25727032)

  • 1. BSA as additive: A simple strategy for practical applications of PNA in bioanalysis.
    Lee J; Park IS; Kim H; Woo JS; Choi BS; Min DH
    Biosens Bioelectron; 2015 Jul; 69():167-73. PubMed ID: 25727032
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrasensitive label-free detection of PNA-DNA hybridization by reduced graphene oxide field-effect transistor biosensor.
    Cai B; Wang S; Huang L; Ning Y; Zhang Z; Zhang GJ
    ACS Nano; 2014 Mar; 8(3):2632-8. PubMed ID: 24528470
    [TBL] [Abstract][Full Text] [Related]  

  • 3. PNA-assembled graphene oxide for sensitive and selective detection of DNA.
    Guo S; Du D; Tang L; Ning Y; Yao Q; Zhang GJ
    Analyst; 2013 Jun; 138(11):3216-20. PubMed ID: 23598429
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct, sequence-specific detection of dsDNA based on peptide nucleic acid and graphene oxide without requiring denaturation.
    Lee J; Park IS; Jung E; Lee Y; Min DH
    Biosens Bioelectron; 2014 Dec; 62():140-4. PubMed ID: 24997367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide arrays for detecting specific DNA hybridization by fluorescence resonance energy transfer.
    Liu F; Choi JY; Seo TS
    Biosens Bioelectron; 2010 Jun; 25(10):2361-5. PubMed ID: 20299201
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative and multiplexed microRNA sensing in living cells based on peptide nucleic acid and nano graphene oxide (PANGO).
    Ryoo SR; Lee J; Yeo J; Na HK; Kim YK; Jang H; Lee JH; Han SW; Lee Y; Kim VN; Min DH
    ACS Nano; 2013 Jul; 7(7):5882-91. PubMed ID: 23767402
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of DNA, aminoethylglycyl PNA and pyrrolidinyl PNA as probes for detection of DNA hybridization using surface plasmon resonance technique.
    Ananthanawat C; Vilaivan T; Hoven VP; Su X
    Biosens Bioelectron; 2010 Jan; 25(5):1064-9. PubMed ID: 19864125
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimization of label-free DNA detection with electrochemical impedance spectroscopy using PNA probes.
    Keighley SD; Estrela P; Li P; Migliorato P
    Biosens Bioelectron; 2008 Dec; 24(4):912-7. PubMed ID: 18771911
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sequence-specific recognition of DNA oligomer using peptide nucleic acid (PNA)-modified synthetic ion channels: PNA/DNA hybridization in nanoconfined environment.
    Ali M; Neumann R; Ensinger W
    ACS Nano; 2010 Dec; 4(12):7267-74. PubMed ID: 21082785
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrochemical genosensor based on peptide nucleic acid-mediated PCR and asymmetric PCR techniques: Electrostatic interactions with a metal cation.
    Kerman K; Vestergaard M; Nagatani N; Takamura Y; Tamiya E
    Anal Chem; 2006 Apr; 78(7):2182-9. PubMed ID: 16579596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new system for the amplification of biological signals: RecA and complimentary single strand DNA probes on a leaky surface acoustic wave biosensor.
    Zhang L; Wang Y; Chen M; Luo Y; Deng K; Chen D; Fu W
    Biosens Bioelectron; 2014 Oct; 60():259-64. PubMed ID: 24813916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Comparing the interactions of DNA, polyamide (PNA) and polycarbamate nucleic acid (PCNA) oligomers with graphene oxide (GO).
    Kotikam V; Fernandes M; Kumar VA
    Phys Chem Chem Phys; 2012 Nov; 14(43):15003-6. PubMed ID: 23038211
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors.
    Zhang GJ; Chua JH; Chee RE; Agarwal A; Wong SM; Buddharaju KD; Balasubramanian N
    Biosens Bioelectron; 2008 Jun; 23(11):1701-7. PubMed ID: 18356037
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication of Ultrasensitive Field-Effect Transistor DNA Biosensors by a Directional Transfer Technique Based on CVD-Grown Graphene.
    Zheng C; Huang L; Zhang H; Sun Z; Zhang Z; Zhang GJ
    ACS Appl Mater Interfaces; 2015 Aug; 7(31):16953-9. PubMed ID: 26203889
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization-free electrochemical DNA detection with anthraquinone-labeled pyrrolidinyl peptide nucleic acid probe.
    Kongpeth J; Jampasa S; Chaumpluk P; Chailapakul O; Vilaivan T
    Talanta; 2016; 146():318-25. PubMed ID: 26695270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Surface plasmon resonance study of PNA interactions with double-stranded DNA.
    Ananthanawat C; Hoven VP; Vilaivan T; Su X
    Biosens Bioelectron; 2011 Jan; 26(5):1918-23. PubMed ID: 20580217
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptide nucleic acid-mediated aggregation of reduced graphene oxides and label-free detection of DNA mutation.
    Kang T; Choi H; Joo SW; Lee SY; Yoon KA; Lee K
    J Phys Chem B; 2014 Jun; 118(23):6297-301. PubMed ID: 24821658
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Polyaniline based nucleic acid sensor.
    Prabhakar N; Arora K; Singh H; Malhotra BD
    J Phys Chem B; 2008 Apr; 112(15):4808-16. PubMed ID: 18335925
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simple and label-free electrochemical impedance Amelogenin gene hybridization biosensing based on reduced graphene oxide.
    Benvidi A; Rajabzadeh N; Mazloum-Ardakani M; Heidari MM; Mulchandani A
    Biosens Bioelectron; 2014 Aug; 58():145-52. PubMed ID: 24632459
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Label-free electrochemical detection of DNA using ferrocene-containing cationic polythiophene and PNA probes on nanogold modified electrodes.
    Fang B; Jiao S; Li M; Qu Y; Jiang X
    Biosens Bioelectron; 2008 Feb; 23(7):1175-9. PubMed ID: 18068346
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.