These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

267 related articles for article (PubMed ID: 25727155)

  • 1. Effects of nitrate dosing on sulfidogenic and methanogenic activities in sewer sediment.
    Liu Y; Sharma KR; Ni BJ; Fan L; Murthy S; Tyson GQ; Yuan Z
    Water Res; 2015 May; 74():155-65. PubMed ID: 25727155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of nitrate dosing on methanogenic activity in a sulfide-producing sewer biofilm reactor.
    Jiang G; Sharma KR; Yuan Z
    Water Res; 2013 Apr; 47(5):1783-92. PubMed ID: 23352490
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Implications of Downstream Nitrate Dosage in anaerobic sewers to control sulfide and methane emissions.
    Auguet O; Pijuan M; Guasch-Balcells H; Borrego CM; Gutierrez O
    Water Res; 2015 Jan; 68():522-32. PubMed ID: 25462758
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfide and methane production in sewer sediments.
    Liu Y; Ni BJ; Ganigué R; Werner U; Sharma KR; Yuan Z
    Water Res; 2015 Mar; 70():350-9. PubMed ID: 25543244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Impact of nitrate addition on biofilm properties and activities in rising main sewers.
    Mohanakrishnan J; Gutierrez O; Sharma KR; Guisasola A; Werner U; Meyer RL; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4225-37. PubMed ID: 19577270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sulfide elimination by intermittent nitrate dosing in sewer sediments.
    Liu Y; Wu C; Zhou X; Zhu DZ; Shi H
    J Environ Sci (China); 2015 Jan; 27():259-65. PubMed ID: 25597685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different ferric dosing strategies could result in different control mechanisms of sulfide and methane production in sediments of gravity sewers.
    Cao J; Zhang L; Hong J; Sun J; Jiang F
    Water Res; 2019 Nov; 164():114914. PubMed ID: 31400595
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Sulfide and methane production in sewer sediments: Field survey and model evaluation.
    Liu Y; Tugtas AE; Sharma KR; Ni BJ; Yuan Z
    Water Res; 2016 Feb; 89():142-50. PubMed ID: 26650449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anoxic sulfide oxidation in wastewater of sewer networks.
    Yang W; Vollertsen J; Hvitved-Jacobsen T
    Water Sci Technol; 2005; 52(3):191-9. PubMed ID: 16206859
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Inhibition of sulfate-reducing and methanogenic activities of anaerobic sewer biofilms by ferric iron dosing.
    Zhang L; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4123-32. PubMed ID: 19576610
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indirect sulfur reduction via polysulfide contributes to serious odor problem in a sewer receiving nitrate dosage.
    Liang S; Zhang L; Jiang F
    Water Res; 2016 Sep; 100():421-428. PubMed ID: 27232986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reducing sulfide and methane production in gravity sewer sediments through urine separation, collection and intermittent dosing.
    Zuo Z; Xing Y; Duan H; Ren D; Zheng M; Liu Y; Huang X
    Water Res; 2023 May; 234():119820. PubMed ID: 36889087
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of pH shock as a method for controlling sulfide and methane formation in pressure main sewer systems.
    Gutierrez O; Sudarjanto G; Ren G; Ganigué R; Jiang G; Yuan Z
    Water Res; 2014 Jan; 48():569-78. PubMed ID: 24210545
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sulfur transformation in rising main sewers receiving nitrate dosage.
    Jiang G; Sharma KR; Guisasola A; Keller J; Yuan Z
    Water Res; 2009 Sep; 43(17):4430-40. PubMed ID: 19625067
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhanced mechanistic insights and performance optimization: Controlling methane and sulfide in sewers using nitrate dosing strategies.
    Chen Y; Xing Y; Zuo Z; Jiang G; Min H; Tang D; Liang P; Huang X; Liu Y
    Sci Total Environ; 2024 Jan; 907():167580. PubMed ID: 37832662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Feasibility of sulfide control in sewers by reuse of iron rich drinking water treatment sludge.
    Sun J; Pikaar I; Sharma KR; Keller J; Yuan Z
    Water Res; 2015 Mar; 71():150-9. PubMed ID: 25616115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of nitrite concentration and exposure time on sulfide and methane production in sewer systems.
    Jiang G; Gutierrez O; Sharma KR; Yuan Z
    Water Res; 2010 Jul; 44(14):4241-51. PubMed ID: 20554309
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simulation of sulfide buildup in wastewater and atmosphere of sewer networks.
    Nielsen AH; Yongsiri C; Hvitved-Jacobsen T; Vollertsen J
    Water Sci Technol; 2005; 52(3):201-8. PubMed ID: 16206860
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of temperature on anoxic sulfide oxidation and denitrification in the bulk wastewater phase of sewer networks.
    Mathioudakis VL; Aivasidis A
    Water Sci Technol; 2009; 59(4):705-12. PubMed ID: 19237764
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impact of oxygen injection on CH4 and N2O emissions from rising main sewers.
    Ganigué R; Yuan Z
    J Environ Manage; 2014 Nov; 144():279-85. PubMed ID: 24975803
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.