These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
327 related articles for article (PubMed ID: 25727246)
1. Splicing regulation in spinal muscular atrophy by an RNA structure formed by long-distance interactions. Singh NN; Lee BM; Singh RN Ann N Y Acad Sci; 2015 Apr; 1341():176-87. PubMed ID: 25727246 [TBL] [Abstract][Full Text] [Related]
2. An intronic structure enabled by a long-distance interaction serves as a novel target for splicing correction in spinal muscular atrophy. Singh NN; Lawler MN; Ottesen EW; Upreti D; Kaczynski JR; Singh RN Nucleic Acids Res; 2013 Sep; 41(17):8144-65. PubMed ID: 23861442 [TBL] [Abstract][Full Text] [Related]
3. Splicing of a critical exon of human Survival Motor Neuron is regulated by a unique silencer element located in the last intron. Singh NK; Singh NN; Androphy EJ; Singh RN Mol Cell Biol; 2006 Feb; 26(4):1333-46. PubMed ID: 16449646 [TBL] [Abstract][Full Text] [Related]
4. Antisense masking of an hnRNP A1/A2 intronic splicing silencer corrects SMN2 splicing in transgenic mice. Hua Y; Vickers TA; Okunola HL; Bennett CF; Krainer AR Am J Hum Genet; 2008 Apr; 82(4):834-48. PubMed ID: 18371932 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of Splicing Regulation of Spinal Muscular Atrophy Genes. Singh RN; Singh NN Adv Neurobiol; 2018; 20():31-61. PubMed ID: 29916015 [TBL] [Abstract][Full Text] [Related]
6. Mechanistic principles of antisense targets for the treatment of spinal muscular atrophy. Singh NN; Lee BM; DiDonato CJ; Singh RN Future Med Chem; 2015; 7(13):1793-808. PubMed ID: 26381381 [TBL] [Abstract][Full Text] [Related]
8. Determinants of exon 7 splicing in the spinal muscular atrophy genes, SMN1 and SMN2. Cartegni L; Hastings ML; Calarco JA; de Stanchina E; Krainer AR Am J Hum Genet; 2006 Jan; 78(1):63-77. PubMed ID: 16385450 [TBL] [Abstract][Full Text] [Related]
9. RNA in spinal muscular atrophy: therapeutic implications of targeting. Singh RN; Seo J; Singh NN Expert Opin Ther Targets; 2020 Aug; 24(8):731-743. PubMed ID: 32538213 [TBL] [Abstract][Full Text] [Related]
10. A multi-exon-skipping detection assay reveals surprising diversity of splice isoforms of spinal muscular atrophy genes. Singh NN; Seo J; Rahn SJ; Singh RN PLoS One; 2012; 7(11):e49595. PubMed ID: 23185376 [TBL] [Abstract][Full Text] [Related]
11. An extended inhibitory context causes skipping of exon 7 of SMN2 in spinal muscular atrophy. Singh NN; Androphy EJ; Singh RN Biochem Biophys Res Commun; 2004 Mar; 315(2):381-8. PubMed ID: 14766219 [TBL] [Abstract][Full Text] [Related]
12. A short antisense oligonucleotide masking a unique intronic motif prevents skipping of a critical exon in spinal muscular atrophy. Singh NN; Shishimorova M; Cao LC; Gangwani L; Singh RN RNA Biol; 2009; 6(3):341-50. PubMed ID: 19430205 [TBL] [Abstract][Full Text] [Related]
13. Absence of an intron splicing silencer in porcine Smn1 intron 7 confers immunity to the exon skipping mutation in human SMN2. Doktor TK; Schrøder LD; Andersen HS; Brøner S; Kitewska A; Sørensen CB; Andresen BS PLoS One; 2014; 9(6):e98841. PubMed ID: 24892836 [TBL] [Abstract][Full Text] [Related]
14. Activation of a cryptic 5' splice site reverses the impact of pathogenic splice site mutations in the spinal muscular atrophy gene. Singh NN; Del Rio-Malewski JB; Luo D; Ottesen EW; Howell MD; Singh RN Nucleic Acids Res; 2017 Dec; 45(21):12214-12240. PubMed ID: 28981879 [TBL] [Abstract][Full Text] [Related]
15. A negatively acting bifunctional RNA increases survival motor neuron both in vitro and in vivo. Dickson A; Osman E; Lorson CL Hum Gene Ther; 2008 Nov; 19(11):1307-15. PubMed ID: 19848583 [TBL] [Abstract][Full Text] [Related]
16. Dual masking of specific negative splicing regulatory elements resulted in maximal exon 7 inclusion of SMN2 gene. Pao PW; Wee KB; Yee WC; Pramono ZA Mol Ther; 2014 Apr; 22(4):854-61. PubMed ID: 24317636 [TBL] [Abstract][Full Text] [Related]
17. Oxidative Stress Triggers Body-Wide Skipping of Multiple Exons of the Spinal Muscular Atrophy Gene. Seo J; Singh NN; Ottesen EW; Sivanesan S; Shishimorova M; Singh RN PLoS One; 2016; 11(4):e0154390. PubMed ID: 27111068 [TBL] [Abstract][Full Text] [Related]
18. Recent Advances and Clinical Applications of Exon Inclusion for Spinal Muscular Atrophy. Son HW; Yokota T Methods Mol Biol; 2018; 1828():57-68. PubMed ID: 30171534 [TBL] [Abstract][Full Text] [Related]
19. Nusinersen in the Treatment of Spinal Muscular Atrophy. Goodkey K; Aslesh T; Maruyama R; Yokota T Methods Mol Biol; 2018; 1828():69-76. PubMed ID: 30171535 [TBL] [Abstract][Full Text] [Related]
20. Bifunctional RNAs targeting the intronic splicing silencer N1 increase SMN levels and reduce disease severity in an animal model of spinal muscular atrophy. Osman EY; Yen PF; Lorson CL Mol Ther; 2012 Jan; 20(1):119-26. PubMed ID: 22031236 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]