These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

436 related articles for article (PubMed ID: 25727384)

  • 1. Cardiorenal Syndrome and the Role of the Bone-Mineral Axis and Anemia.
    Charytan DM; Fishbane S; Malyszko J; McCullough PA; Goldsmith D
    Am J Kidney Dis; 2015 Aug; 66(2):196-205. PubMed ID: 25727384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cardiorenal Syndrome in End-Stage Kidney Disease.
    Tsuruya K; Eriguchi M; Yamada S; Hirakata H; Kitazono T
    Blood Purif; 2015; 40(4):337-43. PubMed ID: 26657922
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increased FGF23 protects against detrimental cardio-renal consequences during elevated blood phosphate in CKD.
    Clinkenbeard EL; Noonan ML; Thomas JC; Ni P; Hum JM; Aref M; Swallow EA; Moe SM; Allen MR; White KE
    JCI Insight; 2019 Feb; 4(4):. PubMed ID: 30830862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of fibroblast growth factor 23 in chronic kidney disease-mineral and bone disorder.
    Diniz H; Frazão JM
    Nefrologia; 2013 Nov; 33(6):835-44. PubMed ID: 24158124
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Role of Fibroblast Growth Factor 23 in Inflammation and Anemia.
    Czaya B; Faul C
    Int J Mol Sci; 2019 Aug; 20(17):. PubMed ID: 31461904
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fibroblast growth factor 23 in chronic kidney disease: New insights and clinical implications.
    Damasiewicz MJ; Toussaint ND; Polkinghorne KR
    Nephrology (Carlton); 2011 Mar; 16(3):261-8. PubMed ID: 21265930
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Non-renal-Related Mechanisms of FGF23 Pathophysiology.
    Hanudel MR; Laster M; Salusky IB
    Curr Osteoporos Rep; 2018 Dec; 16(6):724-729. PubMed ID: 30353318
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The roles of the skeleton and phosphorus in the CKD mineral bone disorder.
    Hruska KA; Mathew S
    Adv Chronic Kidney Dis; 2011 Mar; 18(2):98-104. PubMed ID: 21406294
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Osteo-renal regulation of systemic phosphate metabolism.
    Razzaque MS
    IUBMB Life; 2011 Apr; 63(4):240-7. PubMed ID: 21438115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. FGF-23: the rise of a novel cardiovascular risk marker in CKD.
    Heine GH; Seiler S; Fliser D
    Nephrol Dial Transplant; 2012 Aug; 27(8):3072-81. PubMed ID: 22851630
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcitriol, calcidiol, parathyroid hormone, and fibroblast growth factor-23 interactions in chronic kidney disease.
    de Brito Galvao JF; Nagode LA; Schenck PA; Chew DJ
    J Vet Emerg Crit Care (San Antonio); 2013; 23(2):134-62. PubMed ID: 23566108
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cardiovascular pathophysiology in chronic kidney disease: opportunities to transition from disease to health.
    Tomey MI; Winston JA
    Ann Glob Health; 2014; 80(1):69-76. PubMed ID: 24751567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Derangements in phosphate metabolism in chronic kidney diseases/endstage renal disease: therapeutic considerations.
    Molony DA; Stephens BW
    Adv Chronic Kidney Dis; 2011 Mar; 18(2):120-31. PubMed ID: 21406297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Parathyroid function in chronic kidney disease: role of FGF23-Klotho axis.
    Koizumi M; Komaba H; Fukagawa M
    Contrib Nephrol; 2013; 180():110-23. PubMed ID: 23652554
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Integral pharmacological management of bone mineral disorders in chronic kidney disease (part I): from treatment of phosphate imbalance to control of PTH and prevention of progression of cardiovascular calcification.
    Bover J; Ureña-Torres P; Lloret MJ; Ruiz-García C; DaSilva I; Diaz-Encarnacion MM; Mercado C; Mateu S; Fernández E; Ballarin J
    Expert Opin Pharmacother; 2016 Jun; 17(9):1247-58. PubMed ID: 27156993
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Emerging role of a phosphatonin in mineral homeostasis and its derangements.
    Bielesz B
    Eur J Clin Invest; 2006 Aug; 36 Suppl 2():34-42. PubMed ID: 16884396
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cardiorenal syndrome type 4: insights on clinical presentation and pathophysiology from the eleventh consensus conference of the Acute Dialysis Quality Initiative (ADQI).
    Tumlin JA; Costanzo MR; Chawla LS; Herzog CA; Kellum JA; McCullough PA; Ronco C
    Contrib Nephrol; 2013; 182():158-73. PubMed ID: 23689661
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Longitudinal Evolution of Markers of Mineral Metabolism in Patients With CKD: The Chronic Renal Insufficiency Cohort (CRIC) Study.
    Isakova T; Cai X; Lee J; Mehta R; Zhang X; Yang W; Nessel L; Anderson AH; Lo J; Porter A; Nunes JW; Negrea L; Hamm L; Horwitz E; Chen J; Scialla JJ; de Boer IH; Leonard MB; Feldman HI; Wolf M;
    Am J Kidney Dis; 2020 Feb; 75(2):235-244. PubMed ID: 31668375
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fibroblast growth factor-23 and mineral metabolism after unilateral nephrectomy.
    Westerberg PA; Ljunggren O; Larsson TE; Wadström J; Linde T
    Nephrol Dial Transplant; 2010 Dec; 25(12):4068-71. PubMed ID: 20525976
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mineral metabolism abnormalities and vitamin D receptor activation in cardiorenal syndromes.
    Ronco C; Cozzolino M
    Heart Fail Rev; 2012 Mar; 17(2):211-20. PubMed ID: 21327712
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.