BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

205 related articles for article (PubMed ID: 25728013)

  • 1. Reduced fractional anisotropy in the anterior corpus callosum is associated with reduced speech fluency in persistent developmental stuttering.
    Civier O; Kronfeld-Duenias V; Amir O; Ezrati-Vinacour R; Ben-Shachar M
    Brain Lang; 2015 Apr; 143():20-31. PubMed ID: 25728013
    [TBL] [Abstract][Full Text] [Related]  

  • 2. White matter neuroanatomical differences in young children who stutter.
    Chang SE; Zhu DC; Choo AL; Angstadt M
    Brain; 2015 Mar; 138(Pt 3):694-711. PubMed ID: 25619509
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The frontal aslant tract underlies speech fluency in persistent developmental stuttering.
    Kronfeld-Duenias V; Amir O; Ezrati-Vinacour R; Civier O; Ben-Shachar M
    Brain Struct Funct; 2016 Jan; 221(1):365-81. PubMed ID: 25344925
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disrupted white matter in language and motor tracts in developmental stuttering.
    Connally EL; Ward D; Howell P; Watkins KE
    Brain Lang; 2014 Apr; 131():25-35. PubMed ID: 23819900
    [TBL] [Abstract][Full Text] [Related]  

  • 5. White matter tractography of the neural network for speech-motor control in children who stutter.
    Misaghi E; Zhang Z; Gracco VL; De Nil LF; Beal DS
    Neurosci Lett; 2018 Mar; 668():37-42. PubMed ID: 29309858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. White matter pathways in persistent developmental stuttering: Lessons from tractography.
    Kronfeld-Duenias V; Civier O; Amir O; Ezrati-Vinacour R; Ben-Shachar M
    J Fluency Disord; 2018 Mar; 55():68-83. PubMed ID: 29050641
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dorsal and ventral language pathways in persistent developmental stuttering.
    Kronfeld-Duenias V; Amir O; Ezrati-Vinacour R; Civier O; Ben-Shachar M
    Cortex; 2016 Aug; 81():79-92. PubMed ID: 27179916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural connectivity of right frontal hyperactive areas scales with stuttering severity.
    Neef NE; Anwander A; Bütfering C; Schmidt-Samoa C; Friederici AD; Paulus W; Sommer M
    Brain; 2018 Jan; 141(1):191-204. PubMed ID: 29228195
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Speech rate association with cerebellar white-matter diffusivity in adults with persistent developmental stuttering.
    Jossinger S; Kronfeld-Duenias V; Zislis A; Amir O; Ben-Shachar M
    Brain Struct Funct; 2021 Apr; 226(3):801-816. PubMed ID: 33538875
    [TBL] [Abstract][Full Text] [Related]  

  • 10. White matter microstructural differences underlying beta oscillations during speech in adults who stutter.
    Mollaei F; Mersov A; Woodbury M; Jobst C; Cheyne D; De Nil L
    Brain Lang; 2021 Apr; 215():104921. PubMed ID: 33550120
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A voxel-based morphometry (VBM) analysis of regional grey and white matter volume abnormalities within the speech production network of children who stutter.
    Beal DS; Gracco VL; Brettschneider J; Kroll RM; De Nil LF
    Cortex; 2013 Sep; 49(8):2151-61. PubMed ID: 23140891
    [TBL] [Abstract][Full Text] [Related]  

  • 12. White matter correlates of sensorimotor synchronization in persistent developmental stuttering.
    Jossinger S; Sares A; Zislis A; Sury D; Gracco V; Ben-Shachar M
    J Commun Disord; 2022; 95():106169. PubMed ID: 34856426
    [TBL] [Abstract][Full Text] [Related]  

  • 13. White matter connectivity in neonates at risk of stuttering: Preliminary data.
    Packman A; Onslow M; Lagopoulos J; Shan ZY; Lowe R; Jones M; O'Brian S; Sommer M
    Neurosci Lett; 2022 Jun; 781():136655. PubMed ID: 35469821
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Corpus callosum size and diffusion tensor anisotropy in adolescents and adults with schizophrenia.
    Balevich EC; Haznedar MM; Wang E; Newmark RE; Bloom R; Schneiderman JS; Aronowitz J; Tang CY; Chu KW; Byne W; Buchsbaum MS; Hazlett EA
    Psychiatry Res; 2015 Mar; 231(3):244-51. PubMed ID: 25637358
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Role of Basal Ganglia and Its Neuronal Connections in the Development of Stuttering: A Review Article.
    G D; B H S; Gajbe U; Singh BR; Sawal A; Balwir T
    Cureus; 2022 Aug; 14(8):e28653. PubMed ID: 36196326
    [TBL] [Abstract][Full Text] [Related]  

  • 16. White matter tract strength correlates with therapy outcome in persistent developmental stuttering.
    Neef NE; Korzeczek A; Primaßin A; Wolff von Gudenberg A; Dechent P; Riedel CH; Paulus W; Sommer M
    Hum Brain Mapp; 2022 Aug; 43(11):3357-3374. PubMed ID: 35415866
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Left posterior-dorsal area 44 couples with parietal areas to promote speech fluency, while right area 44 activity promotes the stopping of motor responses.
    Neef NE; Bütfering C; Anwander A; Friederici AD; Paulus W; Sommer M
    Neuroimage; 2016 Nov; 142():628-644. PubMed ID: 27542724
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Corpus callosum differences associated with persistent stuttering in adults.
    Choo AL; Kraft SJ; Olivero W; Ambrose NG; Sharma H; Chang SE; Loucks TM
    J Commun Disord; 2011; 44(4):470-7. PubMed ID: 21513943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plasticity of Interhemispheric Temporal Lobe White Matter Pathways Due to Early Disruption of Corpus Callosum Development in Spina Bifida.
    Bradley KA; Juranek J; Romanowska-Pawliczek A; Hannay HJ; Cirino PT; Dennis M; Kramer LA; Fletcher JM
    Brain Connect; 2016 Apr; 6(3):238-48. PubMed ID: 26798959
    [TBL] [Abstract][Full Text] [Related]  

  • 20. White matter alterations in narcolepsy patients with cataplexy: tract-based spatial statistics.
    Park YK; Kwon OH; Joo EY; Kim JH; Lee JM; Kim ST; Hong SB
    J Sleep Res; 2016 Apr; 25(2):181-9. PubMed ID: 26610427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.