These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Mitochondrial cyclophilin-D as a critical mediator of ischaemic preconditioning. Hausenloy DJ; Lim SY; Ong SG; Davidson SM; Yellon DM Cardiovasc Res; 2010 Oct; 88(1):67-74. PubMed ID: 20400621 [TBL] [Abstract][Full Text] [Related]
4. Pharmacologic targeting or genetic deletion of mitochondrial cyclophilin D protects from NSAID-induced small intestinal ulceration in mice. LoGuidice A; Ramirez-Alcantara V; Proli A; Gavillet B; Boelsterli UA Toxicol Sci; 2010 Nov; 118(1):276-85. PubMed ID: 20668000 [TBL] [Abstract][Full Text] [Related]
5. Calcium influx blocked by SK&F 96365 modulates the LPS plus IFN-γ-induced inflammatory response in murine peritoneal macrophages. Ye Y; Huang X; Zhang Y; Lai X; Wu X; Zeng X; Tang X; Zeng Y Int Immunopharmacol; 2012 Feb; 12(2):384-93. PubMed ID: 22212354 [TBL] [Abstract][Full Text] [Related]
6. Phosphate is not an absolute requirement for the inhibitory effects of cyclosporin A or cyclophilin D deletion on mitochondrial permeability transition. McGee AM; Baines CP Biochem J; 2012 Apr; 443(1):185-91. PubMed ID: 22236255 [TBL] [Abstract][Full Text] [Related]
8. The mitochondrial permeability transition pore regulates endothelial bioenergetics and angiogenesis. Marcu R; Kotha S; Zhi Z; Qin W; Neeley CK; Wang RK; Zheng Y; Hawkins BJ Circ Res; 2015 Apr; 116(8):1336-45. PubMed ID: 25722455 [TBL] [Abstract][Full Text] [Related]
9. The role of cyclophilin D in interspecies differences in susceptibility to hepatotoxic drug-induced mitochondrial injury. Sekine S; Kimura T; Motoyama M; Shitara Y; Wakazono H; Oida H; Horie T Biochem Pharmacol; 2013 Nov; 86(10):1507-14. PubMed ID: 24012842 [TBL] [Abstract][Full Text] [Related]
10. Cyclophilin D-dependent mitochondrial permeability transition amplifies inflammatory reprogramming in endotoxemia. Veres B; Eros K; Antus C; Kalman N; Fonai F; Jakus PB; Boros E; Hegedus Z; Nagy I; Tretter L; Gallyas F; Sumegi B FEBS Open Bio; 2021 Mar; 11(3):684-704. PubMed ID: 33471430 [TBL] [Abstract][Full Text] [Related]
11. Nodakenin suppresses lipopolysaccharide-induced inflammatory responses in macrophage cells by inhibiting tumor necrosis factor receptor-associated factor 6 and nuclear factor-κB pathways and protects mice from lethal endotoxin shock. Rim HK; Cho W; Sung SH; Lee KT J Pharmacol Exp Ther; 2012 Sep; 342(3):654-64. PubMed ID: 22637723 [TBL] [Abstract][Full Text] [Related]
12. The role of STAT1/IRF-1 on synergistic ROS production and loss of mitochondrial transmembrane potential during hepatic cell death induced by LPS/d-GalN. Lee HJ; Oh YK; Rhee M; Lim JY; Hwang JY; Park YS; Kwon Y; Choi KH; Jo I; Park SI; Gao B; Kim WH J Mol Biol; 2007 Jun; 369(4):967-84. PubMed ID: 17475277 [TBL] [Abstract][Full Text] [Related]
13. The p38 MAPK inhibitor JLU1124 inhibits the inflammatory response induced by lipopolysaccharide through the MAPK-NF-κB pathway in RAW264.7 macrophages. Li XN; Su J; Zhao L; Xiang JB; Wang W; Liu F; Li HY; Zhong JT; Bai X; Sun LK Int Immunopharmacol; 2013 Nov; 17(3):785-92. PubMed ID: 24070708 [TBL] [Abstract][Full Text] [Related]
14. Knockout of cyclophilin D in Ppif⁻/⁻ mice increases stability of brain mitochondria against Ca²⁺ stress. Gainutdinov T; Molkentin JD; Siemen D; Ziemer M; Debska-Vielhaber G; Vielhaber S; Gizatullina Z; Orynbayeva Z; Gellerich FN Arch Biochem Biophys; 2015 Aug; 579():40-6. PubMed ID: 26032335 [TBL] [Abstract][Full Text] [Related]
15. Involvement of the mitochondrial permeability transition pore in chronic ethanol-mediated liver injury in mice. King AL; Swain TM; Mao Z; Udoh US; Oliva CR; Betancourt AM; Griguer CE; Crowe DR; Lesort M; Bailey SM Am J Physiol Gastrointest Liver Physiol; 2014 Feb; 306(4):G265-77. PubMed ID: 24356880 [TBL] [Abstract][Full Text] [Related]
16. CypD-mPTP axis regulates mitochondrial functions contributing to osteogenic dysfunction of MC3T3-E1 cells in inflammation. Gan X; Zhang L; Liu B; Zhu Z; He Y; Chen J; Zhu J; Yu H J Physiol Biochem; 2018 Aug; 74(3):395-402. PubMed ID: 29679227 [TBL] [Abstract][Full Text] [Related]
17. MKK3 mediates inflammatory response through modulation of mitochondrial function. Srivastava A; Shinn AS; Lee PJ; Mannam P Free Radic Biol Med; 2015 Jun; 83():139-48. PubMed ID: 25697779 [TBL] [Abstract][Full Text] [Related]
18. Cyclophilin D is required for mitochondrial removal by autophagy in cardiac cells. Carreira RS; Lee Y; Ghochani M; Gustafsson ÅB; Gottlieb RA Autophagy; 2010 May; 6(4):462-72. PubMed ID: 20364102 [TBL] [Abstract][Full Text] [Related]
19. Ginsenoside Re ameliorates inflammation by inhibiting the binding of lipopolysaccharide to TLR4 on macrophages. Lee IA; Hyam SR; Jang SE; Han MJ; Kim DH J Agric Food Chem; 2012 Sep; 60(38):9595-602. PubMed ID: 22849695 [TBL] [Abstract][Full Text] [Related]
20. Ginsenoside Rg1 regulates innate immune responses in macrophages through differentially modulating the NF-κB and PI3K/Akt/mTOR pathways. Wang Y; Liu Y; Zhang XY; Xu LH; Ouyang DY; Liu KP; Pan H; He J; He XH Int Immunopharmacol; 2014 Nov; 23(1):77-84. PubMed ID: 25179784 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]