BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 25728050)

  • 1. Theoretical Modeling of Surface Confined Chiral Nanoporous Networks: Cruciform Molecules as Versatile Building Blocks.
    Kasperski A; Szabelski P
    Chirality; 2015 Jul; 27(7):397-404. PubMed ID: 25728050
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Surface-Confined Self-Assembly of Asymmetric Tetratopic Molecular Building Blocks.
    Nieckarz D; Szabelski P
    Chemphyschem; 2019 Jul; 20(14):1850-1859. PubMed ID: 31095854
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical Modeling of the Surface-Guided Self-Assembly of Functional Molecules.
    Nieckarz D; Szabelski P
    Chemphyschem; 2020 Apr; 21(7):643-650. PubMed ID: 31894625
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Designing 2D covalent networks with lattice Monte Carlo simulations: precursor self-assembly.
    Lisiecki J; Szabelski P
    Phys Chem Chem Phys; 2021 Mar; 23(10):5780-5796. PubMed ID: 33666606
    [TBL] [Abstract][Full Text] [Related]  

  • 5. On-surface self-assembly of tetratopic molecular building blocks.
    Nieckarz D; Rżysko W; Szabelski P
    Phys Chem Chem Phys; 2018 Sep; 20(36):23363-23377. PubMed ID: 30177976
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Computer simulation of chiral nanoporous networks on solid surfaces.
    Szabelski P; De Feyter S; Drach M; Lei S
    Langmuir; 2010 Jun; 26(12):9506-15. PubMed ID: 20205404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-induced homochirality in surface-confined low-density nanoporous molecular networks.
    Destoop I; Ghijsens E; Katayama K; Tahara K; Mali KS; Tobe Y; De Feyter S
    J Am Chem Soc; 2012 Dec; 134(48):19568-71. PubMed ID: 23167496
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chiral switching by spontaneous conformational change in adsorbed organic molecules.
    Weigelt S; Busse C; Petersen L; Rauls E; Hammer B; Gothelf KV; Besenbacher F; Linderoth TR
    Nat Mater; 2006 Feb; 5(2):112-7. PubMed ID: 16415876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring the complexity of supramolecular interactions for patterning at the liquid-solid interface.
    Mali KS; Adisoejoso J; Ghijsens E; De Cat I; De Feyter S
    Acc Chem Res; 2012 Aug; 45(8):1309-20. PubMed ID: 22612471
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Extended surface chirality for enantiospecific adsorption.
    Szabelski P
    Chemistry; 2008; 14(27):8312-21. PubMed ID: 18645995
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of molecular orientational anisotropy in the chiral resolution of enantiomers in adsorbed overlayers.
    Szabelski P; Woszczyk A
    Langmuir; 2012 Jul; 28(30):11095-105. PubMed ID: 22747234
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The interplay of covalency, hydrogen bonding, and dispersion leads to a long range chiral network: The example of 2-butanol.
    Liriano ML; Carrasco J; Lewis EA; Murphy CJ; Lawton TJ; Marcinkowski MD; Therrien AJ; Michaelides A; Sykes EC
    J Chem Phys; 2016 Mar; 144(9):094703. PubMed ID: 26957172
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hierarchic self-assembly of nanoporous chiral networks with conformationally flexible porphyrins.
    Ecija D; Seufert K; Heim D; Auwärter W; Aurisicchio C; Fabbro C; Bonifazi D; Barth JV
    ACS Nano; 2010 Aug; 4(8):4936-42. PubMed ID: 20669905
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling chiral organization of molecular rods on Au(111) by molecular design.
    Knudsen MM; Kalashnyk N; Masini F; Cramer JR; Lægsgaard E; Besenbacher F; Linderoth TR; Gothelf KV
    J Am Chem Soc; 2011 Apr; 133(13):4896-905. PubMed ID: 21401127
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical Modeling of the Metal-Organic Precursors of Anthracene-Based Covalent Networks on Surfaces.
    Lisiecki J; Szabelski P
    Chemphyschem; 2022 Apr; 23(8):e202100877. PubMed ID: 35129274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chirality in adsorption on solid surfaces.
    Zaera F
    Chem Soc Rev; 2017 Dec; 46(23):7374-7398. PubMed ID: 29043322
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Steering organizational and conformational surface chirality by controlling molecular chemical functionality.
    Bombis C; Weigelt S; Knudsen MM; Nørgaard M; Busse C; Laegsgaard E; Besenbacher F; Gothelf KV; Linderoth TR
    ACS Nano; 2010 Jan; 4(1):297-311. PubMed ID: 20000754
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chiral nanopatterned surfaces as versatile enantiospecific adsorbents: a Monte Carlo model.
    Szabelski P
    J Chem Phys; 2008 May; 128(18):184702. PubMed ID: 18532831
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Surface tectonics of nanoporous networks of melamine-capped molecular building blocks formed through interface Schiff-base reactions.
    Liu XH; Wang D; Wan LJ
    Chem Asian J; 2013 Oct; 8(10):2466-70. PubMed ID: 23868669
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Monte Carlo modeling of chiral adsorption on nanostructured chiral surfaces and slit pores.
    Szabelski P; Panczyk T; Drach M
    Langmuir; 2008 Nov; 24(22):12972-80. PubMed ID: 18942862
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.