BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 25728135)

  • 1. BdVIL4 regulates flowering time and branching through repressing miR156 in ambient temperature dependent way in Brachypodium distachyon.
    An Y; Guo Y; Liu C; An H
    Plant Physiol Biochem; 2015 Apr; 89():92-9. PubMed ID: 25728135
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module regulates ambient temperature-responsive flowering via FLOWERING LOCUS T in Arabidopsis.
    Kim JJ; Lee JH; Kim W; Jung HS; Huijser P; Ahn JH
    Plant Physiol; 2012 May; 159(1):461-78. PubMed ID: 22427344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An ortholog of CURLY LEAF/ENHANCER OF ZESTE like-1 is required for proper flowering in Brachypodium distachyon.
    Lomax A; Woods DP; Dong Y; Bouché F; Rong Y; Mayer KS; Zhong X; Amasino RM
    Plant J; 2018 Mar; 93(5):871-882. PubMed ID: 29314414
    [TBL] [Abstract][Full Text] [Related]  

  • 4. BdBRD1, a brassinosteroid C-6 oxidase homolog in Brachypodium distachyon L., is required for multiple organ development.
    Xu Y; Zhang X; Li Q; Cheng Z; Lou H; Ge L; An H
    Plant Physiol Biochem; 2015 Jan; 86():91-99. PubMed ID: 25438141
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Treatment Analogous to Seasonal Change Demonstrates the Integration of Cold Responses in
    Mayer BF; Bertrand A; Charron JB
    Plant Physiol; 2020 Feb; 182(2):1022-1038. PubMed ID: 31843801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of FLOWERING LOCUS T1 (FT1) gene in Brachypodium and wheat.
    Lv B; Nitcher R; Han X; Wang S; Ni F; Li K; Pearce S; Wu J; Dubcovsky J; Fu D
    PLoS One; 2014; 9(4):e94171. PubMed ID: 24718312
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction of photoperiod and vernalization determines flowering time of Brachypodium distachyon.
    Ream TS; Woods DP; Schwartz CJ; Sanabria CP; Mahoy JA; Walters EM; Kaeppler HF; Amasino RM
    Plant Physiol; 2014 Feb; 164(2):694-709. PubMed ID: 24357601
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Global analysis of SBP gene family in Brachypodium distachyon reveals its association with spike development.
    Tripathi RK; Overbeek W; Singh J
    Sci Rep; 2020 Sep; 10(1):15032. PubMed ID: 32929136
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Global analysis of H3K4me3/H3K27me3 in Brachypodium distachyon reveals VRN3 as critical epigenetic regulation point in vernalization and provides insights into epigenetic memory.
    Huan Q; Mao Z; Chong K; Zhang J
    New Phytol; 2018 Sep; 219(4):1373-1387. PubMed ID: 30063801
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3.
    Wu G; Poethig RS
    Development; 2006 Sep; 133(18):3539-47. PubMed ID: 16914499
    [TBL] [Abstract][Full Text] [Related]  

  • 11.
    Liu B; Woods DP; Li W; Amasino RM
    Proc Natl Acad Sci U S A; 2023 Nov; 120(46):e2312052120. PubMed ID: 37934817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal stress effects on grain yield in Brachypodium distachyon occur via H2A.Z-nucleosomes.
    Boden SA; Kavanová M; Finnegan EJ; Wigge PA
    Genome Biol; 2013 Jun; 14(6):R65. PubMed ID: 23800039
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of SEPALLATA3 (SEP3) as a downstream gene of miR156-SPL3-FT circuitry in ambient temperature-responsive flowering.
    Hwan Lee J; Joon Kim J; Ahn JH
    Plant Signal Behav; 2012 Sep; 7(9):1151-4. PubMed ID: 22899051
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mutations in the predicted DNA polymerase subunit POLD3 result in more rapid flowering of Brachypodium distachyon.
    Woods DP; Dong Y; Bouché F; Mayer K; Varner L; Ream TS; Thrower N; Wilkerson C; Cartwright A; Sibout R; Laudencia-Chingcuanco D; Vogel J; Amasino RM
    New Phytol; 2020 Sep; 227(6):1725-1735. PubMed ID: 32173866
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Establishment of a vernalization requirement in
    Woods DP; Ream TS; Bouché F; Lee J; Thrower N; Wilkerson C; Amasino RM
    Proc Natl Acad Sci U S A; 2017 Jun; 114(25):6623-6628. PubMed ID: 28584114
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genome-wide identification, molecular evolution, and expression analysis of auxin response factor (ARF) gene family in Brachypodium distachyon L.
    Liu N; Dong L; Deng X; Liu D; Liu Y; Li M; Hu Y; Yan Y
    BMC Plant Biol; 2018 Dec; 18(1):336. PubMed ID: 30522432
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of FLOWERING LOCUS T by a microRNA in Brachypodium distachyon.
    Wu L; Liu D; Wu J; Zhang R; Qin Z; Liu D; Li A; Fu D; Zhai W; Mao L
    Plant Cell; 2013 Nov; 25(11):4363-77. PubMed ID: 24285787
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulation of FT splicing by an endogenous cue in temperate grasses.
    Qin Z; Wu J; Geng S; Feng N; Chen F; Kong X; Song G; Chen K; Li A; Mao L; Wu L
    Nat Commun; 2017 Feb; 8():14320. PubMed ID: 28145403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression Pattern of
    Zheng J; Ma Y; Zhang M; Lyu M; Yuan Y; Wu B
    Int J Mol Sci; 2019 Jun; 20(11):. PubMed ID: 31163611
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SODIUM POTASSIUM ROOT DEFECTIVE1 regulates FLOWERING LOCUS T expression via the microRNA156-SQUAMOSA PROMOTER BINDING PROTEIN-LIKE3 module in response to potassium conditions.
    Negishi K; Endo M; Abe M; Araki T
    Plant Cell Physiol; 2018 Feb; 59(2):404-413. PubMed ID: 29253219
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.