BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 25728207)

  • 1. Photocarrier recombination dynamics in ternary chalcogenide CuInS2 quantum dots.
    Sun J; Ikezawa M; Wang X; Jing P; Li H; Zhao J; Masumoto Y
    Phys Chem Chem Phys; 2015 May; 17(18):11981-9. PubMed ID: 25728207
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring the effect of band alignment and surface states on photoinduced electron transfer from CuInS2/CdS core/shell quantum dots to TiO2 electrodes.
    Sun M; Zhu D; Ji W; Jing P; Wang X; Xiang W; Zhao J
    ACS Appl Mater Interfaces; 2013 Dec; 5(23):12681-8. PubMed ID: 24206570
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminescence properties and exciton dynamics of core-multi-shell semiconductor quantum dots leading to QLEDs.
    Mehata MS; Ratnesh RK
    Dalton Trans; 2019 Jun; 48(22):7619-7631. PubMed ID: 31070635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Emission-tunable CuInS2/ZnS quantum dots: structure, optical properties, and application in white light-emitting diodes with high color rendering index.
    Chuang PH; Lin CC; Liu RS
    ACS Appl Mater Interfaces; 2014 Sep; 6(17):15379-87. PubMed ID: 25111960
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thick-Shell CuInS
    Zang H; Li H; Makarov NS; Velizhanin KA; Wu K; Park YS; Klimov VI
    Nano Lett; 2017 Mar; 17(3):1787-1795. PubMed ID: 28169547
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Temperature-Dependent Photoluminescence of CdS/ZnS Core/Shell Quantum Dots for Temperature Sensors.
    Tang L; Zhang Y; Liao C; Guo Y; Lu Y; Xia Y; Liu Y
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optical properties and exciton dynamics of alloyed core/shell/shell Cd(1-x)Zn(x)Se/ZnSe/ZnS quantum dots.
    Fitzmorris BC; Pu YC; Cooper JK; Lin YF; Hsu YJ; Li Y; Zhang JZ
    ACS Appl Mater Interfaces; 2013 Apr; 5(8):2893-900. PubMed ID: 23469824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrafast photophysical process of bi-exciton Auger recombination in CuInS
    Yang G; Shi S; Zhang X; Zhou S; Liu D; Liang Y; Chen Z; Liang G
    Opt Express; 2021 Mar; 29(6):9012-9020. PubMed ID: 33820339
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Wavefunction engineering for efficient photoinduced-electron transfer in CuInS
    Sun J; An L; Xue G; Li X
    Nanotechnology; 2020 May; 31(21):215408. PubMed ID: 32040949
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rigid CuInS
    Liu Z; Hao C; Sun Y; Wang J; Dube L; Chen M; Dang W; Hu J; Li X; Chen O
    Nano Lett; 2024 May; 24(17):5342-5350. PubMed ID: 38630899
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Controlled alloying of the core-shell interface in CdSe/CdS quantum dots for suppression of Auger recombination.
    Bae WK; Padilha LA; Park YS; McDaniel H; Robel I; Pietryga JM; Klimov VI
    ACS Nano; 2013 Apr; 7(4):3411-9. PubMed ID: 23521208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocarrier recombination dynamics in perovskite CH3NH3PbI3 for solar cell applications.
    Yamada Y; Nakamura T; Endo M; Wakamiya A; Kanemitsu Y
    J Am Chem Soc; 2014 Aug; 136(33):11610-3. PubMed ID: 25075458
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiple exciton generation and recombination in carbon nanotubes and nanocrystals.
    Kanemitsu Y
    Acc Chem Res; 2013 Jun; 46(6):1358-66. PubMed ID: 23421584
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface passivation extends single and biexciton lifetimes of InP quantum dots.
    Yang W; Yang Y; Kaledin AL; He S; Jin T; McBride JR; Lian T
    Chem Sci; 2020 Jun; 11(22):5779-5789. PubMed ID: 32832054
    [TBL] [Abstract][Full Text] [Related]  

  • 15. PbS/CdS Quantum Dot Room-Temperature Single-Emitter Spectroscopy Reaches the Telecom O and S Bands via an Engineered Stability.
    Krishnamurthy S; Singh A; Hu Z; Blake AV; Kim Y; Singh A; Dolgopolova EA; Williams DJ; Piryatinski A; Malko AV; Htoon H; Sykora M; Hollingsworth JA
    ACS Nano; 2021 Jan; 15(1):575-587. PubMed ID: 33381968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep-red emitting zinc and aluminium co-doped copper indium sulfide quantum dots for luminescent solar concentrators.
    Zhu M; Li Y; Tian S; Xie Y; Zhao X; Gong X
    J Colloid Interface Sci; 2019 Jan; 534():509-517. PubMed ID: 30253352
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Auger recombination of biexcitons and negative and positive trions in individual quantum dots.
    Park YS; Bae WK; Pietryga JM; Klimov VI
    ACS Nano; 2014 Jul; 8(7):7288-96. PubMed ID: 24909861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High-efficiency "green" quantum dot solar cells.
    Pan Z; Mora-SerĂ³ I; Shen Q; Zhang H; Li Y; Zhao K; Wang J; Zhong X; Bisquert J
    J Am Chem Soc; 2014 Jun; 136(25):9203-10. PubMed ID: 24877600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effectual Interface and Defect Engineering for Auger Recombination Suppression in Bright InP/ZnSeS/ZnS Quantum Dots.
    Lee Y; Jo DY; Kim T; Jo JH; Park J; Yang H; Kim D
    ACS Appl Mater Interfaces; 2022 Mar; 14(10):12479-12487. PubMed ID: 35238532
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FRET-Based Analysis of AgInS
    Miropoltsev M; Kuznetsova V; Tkach A; Cherevkov S; Sokolova A; Osipova V; Gromova Y; Baranov M; Fedorov A; Gun'ko Y; Baranov A
    Nanomaterials (Basel); 2020 Dec; 10(12):. PubMed ID: 33302496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.