BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

595 related articles for article (PubMed ID: 25728666)

  • 1. COLD1 confers chilling tolerance in rice.
    Ma Y; Dai X; Xu Y; Luo W; Zheng X; Zeng D; Pan Y; Lin X; Liu H; Zhang D; Xiao J; Guo X; Xu S; Niu Y; Jin J; Zhang H; Xu X; Li L; Wang W; Qian Q; Ge S; Chong K
    Cell; 2015 Mar; 160(6):1209-21. PubMed ID: 25728666
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One SNP in COLD1 Determines Cold Tolerance during Rice Domestication.
    Shi Y; Gong Z
    J Genet Genomics; 2015 Apr; 42(4):133-4. PubMed ID: 25953351
    [No Abstract]   [Full Text] [Related]  

  • 3. Role of the aquaporin PIP1 subfamily in the chilling tolerance of rice.
    Matsumoto T; Lian HL; Su WA; Tanaka D; Liu Cw; Iwasaki I; Kitagawa Y
    Plant Cell Physiol; 2009 Feb; 50(2):216-29. PubMed ID: 19098326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cold tolerance encoded in one SNP.
    Manishankar P; Kudla J
    Cell; 2015 Mar; 160(6):1045-6. PubMed ID: 25768901
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrated global analysis reveals a vitamin E-vitamin K1 sub-network, downstream of COLD1, underlying rice chilling tolerance divergence.
    Luo W; Huan Q; Xu Y; Qian W; Chong K; Zhang J
    Cell Rep; 2021 Jul; 36(3):109397. PubMed ID: 34289369
    [TBL] [Abstract][Full Text] [Related]  

  • 6. OsRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress.
    Chen N; Xu Y; Wang X; DU C; DU J; Yuan M; Xu Z; Chong K
    Plant Cell Environ; 2011 Jan; 34(1):52-64. PubMed ID: 20825577
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cold sensitivity in rice (Oryza sativa L.) is strongly correlated with a naturally occurring I99V mutation in the multifunctional glutathione transferase isoenzyme GSTZ2.
    Kim SI; Andaya VC; Tai TH
    Biochem J; 2011 Apr; 435(2):373-80. PubMed ID: 21281270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Histone deacetylase OsHDA716 represses rice chilling tolerance by deacetylating OsbZIP46 to reduce its transactivation function and protein stability.
    Sun Y; Xie Z; Jin L; Qin T; Zhan C; Huang J
    Plant Cell; 2024 May; 36(5):1913-1936. PubMed ID: 38242836
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transcriptional activation and phosphorylation of OsCNGC9 confer enhanced chilling tolerance in rice.
    Wang J; Ren Y; Liu X; Luo S; Zhang X; Liu X; Lin Q; Zhu S; Wan H; Yang Y; Zhang Y; Lei B; Zhou C; Pan T; Wang Y; Wu M; Jing R; Xu Y; Han M; Wu F; Lei C; Guo X; Cheng Z; Zheng X; Wang Y; Zhao Z; Jiang L; Zhang X; Wang YF; Wang H; Wan J
    Mol Plant; 2021 Feb; 14(2):315-329. PubMed ID: 33278597
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identification of Genes Related to Cold Tolerance and a Functional Allele That Confers Cold Tolerance.
    Xiao N; Gao Y; Qian H; Gao Q; Wu Y; Zhang D; Zhang X; Yu L; Li Y; Pan C; Liu G; Zhou C; Jiang M; Huang N; Dai Z; Liang C; Chen Z; Chen J; Li A
    Plant Physiol; 2018 Jul; 177(3):1108-1123. PubMed ID: 29764927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microarray-assisted fine-mapping of quantitative trait loci for cold tolerance in rice.
    Liu F; Xu W; Song Q; Tan L; Liu J; Zhu Z; Fu Y; Su Z; Sun C
    Mol Plant; 2013 May; 6(3):757-67. PubMed ID: 23267004
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic engineering of rice capable of synthesizing fructans and enhancing chilling tolerance.
    Kawakami A; Sato Y; Yoshida M
    J Exp Bot; 2008; 59(4):793-802. PubMed ID: 18319240
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rice LTG1 is involved in adaptive growth and fitness under low ambient temperature.
    Lu G; Wu FQ; Wu W; Wang HJ; Zheng XM; Zhang Y; Chen X; Zhou K; Jin M; Cheng Z; Li X; Jiang L; Wang H; Wan J
    Plant J; 2014 May; 78(3):468-80. PubMed ID: 24635058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Natural variation in the
    Mao D; Xin Y; Tan Y; Hu X; Bai J; Liu ZY; Yu Y; Li L; Peng C; Fan T; Zhu Y; Guo YL; Wang S; Lu D; Xing Y; Yuan L; Chen C
    Proc Natl Acad Sci U S A; 2019 Feb; 116(9):3494-3501. PubMed ID: 30808744
    [TBL] [Abstract][Full Text] [Related]  

  • 15. COLD1: a cold sensor in rice.
    Shi Y; Yang S
    Sci China Life Sci; 2015 Apr; 58(4):409-10. PubMed ID: 25749425
    [No Abstract]   [Full Text] [Related]  

  • 16. Overexpression of an ERF transcription factor TSRF1 improves rice drought tolerance.
    Quan R; Hu S; Zhang Z; Zhang H; Zhang Z; Huang R
    Plant Biotechnol J; 2010 May; 8(4):476-88. PubMed ID: 20233336
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Overexpression of microRNA319 impacts leaf morphogenesis and leads to enhanced cold tolerance in rice (Oryza sativa L.).
    Yang C; Li D; Mao D; Liu X; Ji C; Li X; Zhao X; Cheng Z; Chen C; Zhu L
    Plant Cell Environ; 2013 Dec; 36(12):2207-18. PubMed ID: 23651319
    [TBL] [Abstract][Full Text] [Related]  

  • 18. SUB1A-dependent and -independent mechanisms are involved in the flooding tolerance of wild rice species.
    Niroula RK; Pucciariello C; Ho VT; Novi G; Fukao T; Perata P
    Plant J; 2012 Oct; 72(2):282-93. PubMed ID: 22709342
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates.
    Liu C; Ou S; Mao B; Tang J; Wang W; Wang H; Cao S; Schläppi MR; Zhao B; Xiao G; Wang X; Chu C
    Nat Commun; 2018 Aug; 9(1):3302. PubMed ID: 30120236
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evolutionary analysis of the Sub1 gene cluster that confers submergence tolerance to domesticated rice.
    Fukao T; Harris T; Bailey-Serres J
    Ann Bot; 2009 Jan; 103(2):143-50. PubMed ID: 18824474
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 30.