These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
219 related articles for article (PubMed ID: 25728915)
1. Vegetation management with fire modifies peatland soil thermal regime. Brown LE; Palmer SM; Johnston K; Holden J J Environ Manage; 2015 May; 154():166-76. PubMed ID: 25728915 [TBL] [Abstract][Full Text] [Related]
2. Postfire response of flood-regenerating riparian vegetation in a semi-arid landscape. Pettit NE; Naiman RJ Ecology; 2007 Aug; 88(8):2094-104. PubMed ID: 17824440 [TBL] [Abstract][Full Text] [Related]
3. Fire regime of peatlands in the Angolan Highlands. Lourenco M; Woodborne S; Fitchett JM Environ Monit Assess; 2022 Nov; 195(1):78. PubMed ID: 36342572 [TBL] [Abstract][Full Text] [Related]
4. River ecosystem response to prescribed vegetation burning on Blanket Peatland. Brown LE; Johnston K; Palmer SM; Aspray KL; Holden J PLoS One; 2013; 8(11):e81023. PubMed ID: 24278367 [TBL] [Abstract][Full Text] [Related]
5. Low-severity fire as a mechanism of organic matter protection in global peatlands: Thermal alteration slows decomposition. Flanagan NE; Wang H; Winton S; Richardson CJ Glob Chang Biol; 2020 Jul; 26(7):3930-3946. PubMed ID: 32388914 [TBL] [Abstract][Full Text] [Related]
6. Leaving moss and litter layers undisturbed reduces the short-term environmental consequences of heathland managed burns. Grau-Andrés R; Davies GM; Waldron S; Scott EM; Gray A J Environ Manage; 2017 Dec; 204(Pt 1):102-110. PubMed ID: 28865305 [TBL] [Abstract][Full Text] [Related]
7. Burning increases post-fire carbon emissions in a heathland and a raised bog, but experimental manipulation of fire severity has no effect. Grau-Andrés R; Gray A; Davies GM; Scott EM; Waldron S J Environ Manage; 2019 Mar; 233():321-328. PubMed ID: 30584963 [TBL] [Abstract][Full Text] [Related]
8. Fire severity is more sensitive to low fuel moisture content on Calluna heathlands than on peat bogs. Grau-Andrés R; Davies GM; Gray A; Scott EM; Waldron S Sci Total Environ; 2018 Mar; 616-617():1261-1269. PubMed ID: 29111249 [TBL] [Abstract][Full Text] [Related]
9. Resilience of temperate peatland vegetation communities to wildfire depends upon burn severity and pre-fire species composition. Davies GM; Gray A; Power SC; Domènech R Ecol Evol; 2023 Apr; 13(4):e9912. PubMed ID: 37056693 [TBL] [Abstract][Full Text] [Related]
10. Fire management alters the thermal landscape and provides multi-scale thermal options for a terrestrial turtle facing a changing climate. Robertson EP; Tanner EP; Elmore RD; Fuhlendorf SD; Mays JD; Knutson J; Weir JR; Loss SR Glob Chang Biol; 2022 Feb; 28(3):782-796. PubMed ID: 34741780 [TBL] [Abstract][Full Text] [Related]
11. Smouldering fire in a nutrient-limited wetland ecosystem: Long-lasting changes in water and soil chemistry facilitate shrub expansion into a drained burned fen. Sulwiński M; Mętrak M; Wilk M; Suska-Malawska M Sci Total Environ; 2020 Dec; 746():141142. PubMed ID: 32739756 [TBL] [Abstract][Full Text] [Related]
12. Carbon emissions from the peat fire problem-a review. Che Azmi NA; Mohd Apandi N; A Rashid AS Environ Sci Pollut Res Int; 2021 Apr; 28(14):16948-16961. PubMed ID: 33641100 [TBL] [Abstract][Full Text] [Related]
13. Impact of post-fire management on soil respiration, carbon and nitrogen content in a managed hemiboreal forest. Parro K; Köster K; Jõgiste K; Seglinš K; Sims A; Stanturf JA; Metslaid M J Environ Manage; 2019 Mar; 233():371-377. PubMed ID: 30590266 [TBL] [Abstract][Full Text] [Related]
14. Fire and grazing effects on wind erosion, soil water content, and soil temperature. Vermeire LT; Wester DB; Mitchell RB; Fuhlendorf SD J Environ Qual; 2005; 34(5):1559-65. PubMed ID: 16091608 [TBL] [Abstract][Full Text] [Related]
15. Bacterial and fungal communities in a degraded ombrotrophic peatland undergoing natural and managed re-vegetation. Elliott DR; Caporn SJ; Nwaishi F; Nilsson RH; Sen R PLoS One; 2015; 10(5):e0124726. PubMed ID: 25969988 [TBL] [Abstract][Full Text] [Related]
16. Linking sediment-charcoal records and ecological modeling to understand causes of fire-regime change in boreal forests. Brubaker LB; Higuera PE; Rupp TS; Olson MA; Anderson PM; Hu FS Ecology; 2009 Jul; 90(7):1788-801. PubMed ID: 19694128 [TBL] [Abstract][Full Text] [Related]
17. Effects of weed-management burning on reptile assemblages in Australian tropical savannas. Valentine LE; Schwarzkopf L Conserv Biol; 2009 Feb; 23(1):103-13. PubMed ID: 18950473 [TBL] [Abstract][Full Text] [Related]
18. Increased fire severity alters initial vegetation regeneration across Calluna-dominated ecosystems. Grau-Andrés R; Davies GM; Waldron S; Scott EM; Gray A J Environ Manage; 2019 Feb; 231():1004-1011. PubMed ID: 30602224 [TBL] [Abstract][Full Text] [Related]
19. Prescribed fire and its impacts on ecosystem services in the UK. Harper AR; Doerr SH; Santin C; Froyd CA; Sinnadurai P Sci Total Environ; 2018 May; 624():691-703. PubMed ID: 29272838 [TBL] [Abstract][Full Text] [Related]
20. Modeling rates of life form cover change in burned and unburned alpine heathland subject to experimental warming. Camac JS; Williams RJ; Wahren CH; Jarrad F; Hoffmann AA; Vesk PA Oecologia; 2015 Jun; 178(2):615-28. PubMed ID: 25694042 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]