These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 25728926)

  • 1. Higher-order architecture of rhodopsin in intact photoreceptors and its implication for phototransduction kinetics.
    Gunkel M; Schöneberg J; Alkhaldi W; Irsen S; Noé F; Kaupp UB; Al-Amoudi A
    Structure; 2015 Apr; 23(4):628-38. PubMed ID: 25728926
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin on tracks: new ways to go in signaling.
    Schertler GF
    Structure; 2015 Apr; 23(4):606-8. PubMed ID: 25862930
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A physiological role for the supramolecular organization of rhodopsin and transducin in rod photoreceptors.
    Dell'Orco D
    FEBS Lett; 2013 Jun; 587(13):2060-6. PubMed ID: 23684654
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Light-dependent redistribution of visual arrestins and transducin subunits in mice with defective phototransduction.
    Zhang H; Huang W; Zhang H; Zhu X; Craft CM; Baehr W; Chen CK
    Mol Vis; 2003 Jun; 9():231-7. PubMed ID: 12802257
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A dynamic scaffolding mechanism for rhodopsin and transducin interaction in vertebrate vision.
    Dell'Orco D; Koch KW
    Biochem J; 2011 Dec; 440(2):263-71. PubMed ID: 21843151
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Affinity of rhodopsin to raft enables the aligned oligomer formation from dimers: Coarse-grained molecular dynamics simulation of disk membranes.
    Kaneshige Y; Hayashi F; Morigaki K; Tanimoto Y; Yamashita H; Fujii M; Awazu A
    PLoS One; 2020; 15(2):e0226123. PubMed ID: 32032370
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palmitoylation is a prerequisite for dimerization-dependent raftophilicity of rhodopsin.
    Seno K; Hayashi F
    J Biol Chem; 2017 Sep; 292(37):15321-15328. PubMed ID: 28747438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A model for the recovery kinetics of rod phototransduction, based on the enzymatic deactivation of rhodopsin.
    Laitko U; Hofmann KP
    Biophys J; 1998 Feb; 74(2 Pt 1):803-15. PubMed ID: 9533693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rhodopsin, light-sensor of vision.
    Hofmann KP; Lamb TD
    Prog Retin Eye Res; 2023 Mar; 93():101116. PubMed ID: 36273969
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanism of G-protein activation by rhodopsin.
    Shichida Y; Morizumi T
    Photochem Photobiol; 2007; 83(1):70-5. PubMed ID: 16800722
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monomeric G protein-coupled receptor rhodopsin in solution activates its G protein transducin at the diffusion limit.
    Ernst OP; Gramse V; Kolbe M; Hofmann KP; Heck M
    Proc Natl Acad Sci U S A; 2007 Jun; 104(26):10859-64. PubMed ID: 17578920
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oligomeric state of rhodopsin within rhodopsin-transducin complex probed with succinylated concanavalin A.
    Jastrzebska B
    Methods Mol Biol; 2015; 1271():221-33. PubMed ID: 25697527
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Photoreceptor function of retinal transplants implicated by light-dark shift of S-antigen and rod transducin.
    Seiler MJ; Aramant RB; Ball SL
    Vision Res; 1999 Jul; 39(15):2589-96. PubMed ID: 10396627
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rhodopsin accumulation at abnormal sites in retinas of mice with a human P23H rhodopsin transgene.
    Roof DJ; Adamian M; Hayes A
    Invest Ophthalmol Vis Sci; 1994 Nov; 35(12):4049-62. PubMed ID: 7960587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The interaction network of rhodopsin involving the heterotrimeric G-protein transducin and the monomeric GTPase Rac1 is determined by distinct binding processes.
    Köster M; Dell'Orco D; Koch KW
    FEBS J; 2014 Dec; 281(23):5175-85. PubMed ID: 25243418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Temporal kinetics of the light/dark translocation and compartmentation of arrestin and alpha-transducin in mouse photoreceptor cells.
    Elias RV; Sezate SS; Cao W; McGinnis JF
    Mol Vis; 2004 Sep; 10():672-81. PubMed ID: 15467522
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Organization of the G protein-coupled receptors rhodopsin and opsin in native membranes.
    Liang Y; Fotiadis D; Filipek S; Saperstein DA; Palczewski K; Engel A
    J Biol Chem; 2003 Jun; 278(24):21655-21662. PubMed ID: 12663652
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of the Organization of Rhodopsin on the Association between Transducin and a Photoactivated Receptor.
    Ramirez SA; Leidy C
    J Phys Chem B; 2018 Sep; 122(38):8872-8879. PubMed ID: 30156842
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation.
    Bosch-Presegué L; Iarriccio L; Aguilà M; Toledo D; Ramon E; Cordomí A; Garriga P
    Arch Biochem Biophys; 2011 Feb; 506(2):142-9. PubMed ID: 21114958
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Light-dependent subcellular movement of photoreceptor proteins.
    Whelan JP; McGinnis JF
    J Neurosci Res; 1988; 20(2):263-70. PubMed ID: 3172281
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.