BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 25728931)

  • 1. On the potential strength and consequences for nonrandom gene flow caused by local adaptation in flowering time.
    Weis AE
    J Evol Biol; 2015 Mar; 28(3):699-714. PubMed ID: 25728931
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phenological mismatch and the effectiveness of assisted gene flow.
    Wadgymar SM; Weis AE
    Conserv Biol; 2017 Jun; 31(3):547-558. PubMed ID: 27943504
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temporal population genetic structure in the pollen pool for flowering time: A field experiment with Brassica rapa (Brassicaceae).
    Ison JL; Weis AE
    Am J Bot; 2017 Oct; 104(10):1569-1580. PubMed ID: 29885229
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Direct and indirect assortative mating: a multivariate approach to plant flowering schedules.
    Weis AE
    J Evol Biol; 2005 May; 18(3):536-46. PubMed ID: 15842483
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating the impact of divergent mating phenology between residents and migrants on the potential for gene flow.
    Bonner C; Sokolov NA; Westover SE; Ho M; Weis AE
    Ecol Evol; 2019 Apr; 9(7):3770-3783. PubMed ID: 31015965
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The strength of assortative mating for flowering date and its basis in individual variation in flowering schedule.
    Weis AE; Nardone E; Fox GA
    J Evol Biol; 2014 Oct; 27(10):2138-51. PubMed ID: 25186618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mating between Echinacea angustifolia (Asteraceae) individuals increases with their flowering synchrony and spatial proximity.
    Ison JL; Wagenius S; Reitz D; Ashley MV
    Am J Bot; 2014 Jan; 101(1):180-9. PubMed ID: 24388964
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Temporal variation in phenotypic gender and expected functional gender within and among individuals in an annual plant.
    Austen EJ; Weis AE
    Ann Bot; 2014 Jul; 114(1):167-77. PubMed ID: 24854170
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Genetic variation in flowering time induces phenological assortative mating: quantitative genetic methods applied to Brassica rapa.
    Weis AE; Kossler TM
    Am J Bot; 2004 Jun; 91(6):825-36. PubMed ID: 21653438
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of flowering phenology on pollen flow distance and the consequences for spatial genetic structure within a population of Primula sieboldii (Primulaceae).
    Kitamoto N; Ueno S; Takenaka A; Tsumura Y; Washitani I; Ohsawa R
    Am J Bot; 2006 Feb; 93(2):226-33. PubMed ID: 21646183
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A change in climate causes rapid evolution of multiple life-history traits and their interactions in an annual plant.
    Franks SJ; Weis AE
    J Evol Biol; 2008 Sep; 21(5):1321-34. PubMed ID: 18557796
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The causes of selection on flowering time through male fitness in a hermaphroditic annual plant.
    Austen EJ; Weis AE
    Evolution; 2016 Jan; 70(1):111-25. PubMed ID: 26596860
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evidence of genetic change in the flowering phenology of sea beets along a latitudinal cline within two decades.
    Van Dijk H; Hautekèete NC
    J Evol Biol; 2014 Aug; 27(8):1572-81. PubMed ID: 24835689
    [TBL] [Abstract][Full Text] [Related]  

  • 14. What drives selection on flowering time? An experimental manipulation of the inherent correlation between genotype and environment.
    Austen EJ; Weis AE
    Evolution; 2015 Aug; 69(8):2018-33. PubMed ID: 26102569
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in the relative abundance and movement of insect pollinators during the flowering cycle of Brassica rapa crops: implications for gene flow.
    Mesa LA; Howlett BG; Grant JE; Didham RK
    J Insect Sci; 2013; 13():13. PubMed ID: 23937538
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evolutionary responses of tree phenology to the combined effects of assortative mating, gene flow and divergent selection.
    Soularue JP; Kremer A
    Heredity (Edinb); 2014 Dec; 113(6):485-94. PubMed ID: 24924591
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assortative mating and differential male mating success in an ash hybrid zone population.
    Gérard PR; Klein EK; Austerlitz F; Fernández-Manjarrés JF; Frascaria-Lacoste N
    BMC Evol Biol; 2006 Nov; 6():96. PubMed ID: 17107611
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mating patterns and contemporary gene flow by pollen in a large continuous and a small isolated population of the scattered forest tree Sorbus torminalis.
    Hoebee SE; Arnold U; Düggelin C; Gugerli F; Brodbeck S; Rotach P; Holderegger R
    Heredity (Edinb); 2007 Jul; 99(1):47-55. PubMed ID: 17473870
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rapid genome-wide evolution in Brassica rapa populations following drought revealed by sequencing of ancestral and descendant gene pools.
    Franks SJ; Kane NC; O'Hara NB; Tittes S; Rest JS
    Mol Ecol; 2016 Aug; 25(15):3622-31. PubMed ID: 27072809
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genetic analysis of differentiation among breeding ponds reveals a candidate gene for local adaptation in Rana arvalis.
    Richter-Boix A; Quintela M; Segelbacher G; Laurila A
    Mol Ecol; 2011 Apr; 20(8):1582-600. PubMed ID: 21332585
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.