These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 25728994)

  • 1. Exploring the electronic structure of an organic semiconductor based on a compactly fused electron donor-acceptor molecule.
    Alemany P; Canadell E; Geng Y; Hauser J; Macchi P; Krämer K; Decurtins S; Liu SX
    Chemphyschem; 2015 May; 16(7):1361-5. PubMed ID: 25728994
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A compact tetrathiafulvalene-benzothiadiazole dyad and its highly symmetrical charge-transfer salt: ordered donor π-stacks closely bound to their acceptors.
    Geng Y; Pfattner R; Campos A; Hauser J; Laukhin V; Puigdollers J; Veciana J; Mas-Torrent M; Rovira C; Decurtins S; Liu SX
    Chemistry; 2014 Jun; 20(23):7136-43. PubMed ID: 24737663
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High pressure behaviour of the organic semiconductor salt (TTF-BTD)
    Montisci F; Lanza A; Fisch M; Sonneville C; Geng Y; Decurtins S; Reber C; Liu SX; Macchi P
    Phys Chem Chem Phys; 2023 Nov; 25(45):31410-31417. PubMed ID: 37962235
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Modulation of the charge transfer and photophysical properties in non-fused tetrathiafulvalene-benzothiadiazole derivatives.
    Pop F; Seifert S; Hankache J; Ding J; Hauser A; Avarvari N
    Org Biomol Chem; 2015 Jan; 13(4):1040-7. PubMed ID: 25410315
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic and optical properties of dye-sensitized TiO₂ interfaces.
    Pastore M; Selloni A; Fantacci S; De Angelis F
    Top Curr Chem; 2014; 347():1-45. PubMed ID: 24488437
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Unusual Electronic Structure of the Donor-Acceptor Cocrystal Formed by Dithieno[3,2-a:2',3'-c]phenazine and 7,7,8,8-Tetracyanoquinodimethane.
    Ai Q; Getmanenko YA; Jarolimek K; Castañeda R; Timofeeva TV; Risko C
    J Phys Chem Lett; 2017 Sep; 8(18):4510-4515. PubMed ID: 28862454
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Covalent non-fused tetrathiafulvalene-acceptor systems.
    Pop F; Avarvari N
    Chem Commun (Camb); 2016 Jun; 52(51):7906-27. PubMed ID: 27193500
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electronic structure and optical properties of an alternated fluorene-benzothiadiazole copolymer: interplay between experimental and theoretical data.
    Rodrigues PC; Berlim LS; Azevedo D; Saavedra NC; Prasad PN; Schreiner WH; Atvars TD; Akcelrud L
    J Phys Chem A; 2012 Apr; 116(14):3681-90. PubMed ID: 22401265
    [TBL] [Abstract][Full Text] [Related]  

  • 9. n-Channel semiconductor materials design for organic complementary circuits.
    Usta H; Facchetti A; Marks TJ
    Acc Chem Res; 2011 Jul; 44(7):501-10. PubMed ID: 21615105
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mono- and bis(tetrathiafulvalene)-1,3,5-triazines as covalently linked donor-acceptor systems: structural, spectroscopic, and theoretical investigations.
    Riobé F; Grosshans P; Sidorenkova H; Geoffroy M; Avarvari N
    Chemistry; 2009; 15(2):380-7. PubMed ID: 19021186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural diversity and physical properties of paramagnetic molecular conductors based on bis(ethylenedithio)tetrathiafulvalene (BEDT-TTF) and the tris(chloranilato)ferrate(III) complex.
    Atzori M; Pop F; Auban-Senzier P; Gómez-García CJ; Canadell E; Artizzu F; Serpe A; Deplano P; Avarvari N; Mercuri ML
    Inorg Chem; 2014 Jul; 53(13):7028-39. PubMed ID: 24927062
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fresh look at electron-transfer mechanisms via the donor/acceptor bindings in the critical encounter complex.
    Rosokha SV; Kochi JK
    Acc Chem Res; 2008 May; 41(5):641-53. PubMed ID: 18380446
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel fused D-A dyad and A-D-A triad incorporating tetrathiafulvalene and p-benzoquinone.
    Dumur F; Gautier N; Gallego-Planas N; Sahin Y; Levillain E; Mercier N; Hudhomme P; Masino M; Girlando A; Lloveras V; Vidal-Gancedo J; Veciana J; Rovira C
    J Org Chem; 2004 Mar; 69(6):2164-77. PubMed ID: 15058966
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Acetylene-derived strong organic acceptors for planar and nonplanar push-pull chromophores.
    Kivala M; Diederich F
    Acc Chem Res; 2009 Feb; 42(2):235-48. PubMed ID: 19061332
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen-bond interaction in organic conductors: redox activation, molecular recognition, structural regulation, and proton transfer in donor-acceptor charge-transfer complexes of TTF-imidazole.
    Murata T; Morita Y; Yakiyama Y; Fukui K; Yamochi H; Saito G; Nakasuji K
    J Am Chem Soc; 2007 Sep; 129(35):10837-46. PubMed ID: 17696346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing molecular wires: synthesis, structural, and electronic study of donor-acceptor assemblies exhibiting long-range electron transfer.
    Giacalone F; Segura JL; Martín N; Ramey J; Guldi DM
    Chemistry; 2005 Aug; 11(16):4819-34. PubMed ID: 15929139
    [TBL] [Abstract][Full Text] [Related]  

  • 17. (EDT-TTF-CONH2)6[Re6Se8(CN)6], a metallic Kagome-type organic-inorganic hybrid compound: electronic instability, molecular motion, and charge localization.
    Baudron SA; Batail P; Coulon C; Clérac R; Canadell E; Laukhin V; Melzi R; Wzietek P; Jérome D; Auban-Senzier P; Ravy S
    J Am Chem Soc; 2005 Aug; 127(33):11785-97. PubMed ID: 16104757
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Charge-transfer excitons at organic semiconductor surfaces and interfaces.
    Zhu XY; Yang Q; Muntwiler M
    Acc Chem Res; 2009 Nov; 42(11):1779-87. PubMed ID: 19378979
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering a remarkably low HOMO-LUMO gap by covalent linkage of a strong pi-donor and a pi-acceptor--tetrathiafulvalene-sigma-polynitrofluorene diads: their amphoteric redox behavior, electron transfer and spectroscopic properties.
    Perepichka DF; Bryce MR; Batsanov AS; McInnes EJ; Zhao JP; Farley RD
    Chemistry; 2002 Oct; 8(20):4656-69. PubMed ID: 12561106
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Chemical Self-Doping of Organic Nanoribbons for High Conductivity and Potential Application as Chemiresistive Sensor.
    Wu N; Wang C; Bunes BR; Zhang Y; Slattum PM; Yang X; Zang L
    ACS Appl Mater Interfaces; 2016 May; 8(19):12360-8. PubMed ID: 27136452
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.