BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 25729090)

  • 1. Disaggregation of legacy soil data using area to point kriging for mapping soil organic carbon at the regional scale.
    Kerry R; Goovaerts P; Rawlins BG; Marchant BP
    Geoderma; 2012 Jan; 170():347-358. PubMed ID: 25729090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Digital Mapping of Soil Organic Carbon Based on Machine Learning and Regression Kriging.
    Zhu C; Wei Y; Zhu F; Lu W; Fang Z; Li Z; Pan J
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433592
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ancillary information improves kriging on soil organic carbon data for a typical karst peak cluster depression landscape.
    Zhang W; Wang K; Chen H; He X; Zhang J
    J Sci Food Agric; 2012 Mar; 92(5):1094-102. PubMed ID: 22297926
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Prediction of the concentration of antimony in agricultural soil using data fusion, terrain attributes combined with regression kriging.
    Agyeman PC; Kingsley J; Kebonye NM; Khosravi V; Borůvka L; Vašát R
    Environ Pollut; 2023 Jan; 316(Pt 1):120697. PubMed ID: 36403872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Accuracy Assessment of Kriging, artificial neural network, and a hybrid approach integrating spatial and terrain data in estimating and mapping of soil organic carbon.
    Kılıç M; Gündoğan R; Günal H; Cemek B
    PLoS One; 2022; 17(5):e0268658. PubMed ID: 35617376
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Spatial interpolation of soil organic matter using regression Kriging and geographically weighted regression Kriging].
    Yang SH; Zhang HT; Guo L; Ren Y
    Ying Yong Sheng Tai Xue Bao; 2015 Jun; 26(6):1649-56. PubMed ID: 26572015
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Disaggregation of conventional soil map by generating multi realizations of soil class distribution (case study: Saadat Shahr plain, Iran).
    Jamshidi M; Delavar MA; Taghizadehe-Mehrjardi R; Brungard C
    Environ Monit Assess; 2019 Nov; 191(12):769. PubMed ID: 31768646
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A coherent geostatistical approach for combining choropleth map and field data in the spatial interpolation of soil properties.
    Goovaerts P
    Eur J Soil Sci; 2011 Jun; 62(3):371-380. PubMed ID: 22308075
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining Soil Databases for Topsoil Organic Carbon Mapping in Europe.
    Aksoy E; Yigini Y; Montanarella L
    PLoS One; 2016; 11(3):e0152098. PubMed ID: 27011357
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial modelling of topsoil properties in Romania using geostatistical methods and machine learning.
    Patriche CV; Roşca B; Pîrnău RG; Vasiliniuc I
    PLoS One; 2023; 18(8):e0289286. PubMed ID: 37611038
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhancing spatial estimates of metal pollutants in raw wastewater irrigated fields using a topsoil organic carbon map predicted from aerial photography.
    Bourennane H; Dère Ch; Lamy I; Cornu S; Baize D; van Oort F; King D
    Sci Total Environ; 2006 May; 361(1-3):229-48. PubMed ID: 15993472
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kriging methods with auxiliary nighttime lights data to detect potentially toxic metals concentrations in soil.
    Zhen J; Pei T; Xie S
    Sci Total Environ; 2019 Apr; 659():363-371. PubMed ID: 30599355
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China.
    Peng G; Bing W; Guangpo G; Guangcan Z
    PLoS One; 2013; 8(12):e83592. PubMed ID: 24391791
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling Soil Organic Carbon at Regional Scale by Combining Multi-Spectral Images with Laboratory Spectra.
    Peng Y; Xiong X; Adhikari K; Knadel M; Grunwald S; Greve MH
    PLoS One; 2015; 10(11):e0142295. PubMed ID: 26555071
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Spatial interpolation model of soil organic carbon density considering land-use and spatial heterogeneity.].
    Wu ZH; Liu YF; Chen YY; Guo L; Jiang QH; Wang SC
    Ying Yong Sheng Tai Xue Bao; 2018 Jan; 29(1):238-246. PubMed ID: 29692033
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On the detailed mapping of peat (raised bogs) using airborne radiometric data.
    Beamish D; White JC
    J Environ Radioact; 2024 Jul; 277():107462. PubMed ID: 38805777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial assessment of soil organic carbon and physicochemical properties in a horticultural orchard at arid zone of India using geostatistical approaches.
    Singh A; Santra P; Kumar M; Panwar N; Meghwal PR
    Environ Monit Assess; 2016 Sep; 188(9):529. PubMed ID: 27553943
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An improved similarity-based approach to predicting and mapping soil organic carbon and soil total nitrogen in a coastal region of northeastern China.
    Wang S; Adhikari K; Zhuang Q; Yang Z; Jin X; Wang Q; Bian Z
    PeerJ; 2020; 8():e9126. PubMed ID: 32518723
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Combining Areal and Point Data in Geostatistical Interpolation: Applications to Soil Science and Medical Geography.
    Goovaerts P
    Math Geosci; 2010 Jul; 42(5):535-554. PubMed ID: 21132098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Soil organic carbon stock retrieval from Sentinel-2A using a hybrid approach.
    Suleymanov A; Abakumov E; Nizamutdinov T; Polyakov V; Shevchenko E; Makarova M
    Environ Monit Assess; 2023 Dec; 196(1):23. PubMed ID: 38062205
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.