These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

319 related articles for article (PubMed ID: 25729356)

  • 1. Developing highER-throughput zebrafish screens for in-vivo CNS drug discovery.
    Stewart AM; Gerlai R; Kalueff AV
    Front Behav Neurosci; 2015; 9():14. PubMed ID: 25729356
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A novel 3D method of locomotor analysis in adult zebrafish: Implications for automated detection of CNS drug-evoked phenotypes.
    Stewart AM; Grieco F; Tegelenbosch RA; Kyzar EJ; Nguyen M; Kaluyeva A; Song C; Noldus LP; Kalueff AV
    J Neurosci Methods; 2015 Nov; 255():66-74. PubMed ID: 26238728
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Skin too thin? The developing utility of zebrafish skin (neuro)pharmacology for CNS drug discovery research.
    Nguyen M; Poudel MK; Stewart AM; Kalueff AV
    Brain Res Bull; 2013 Sep; 98():145-54. PubMed ID: 24007957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Discovering novel neuroactive drugs through high-throughput behavior-based chemical screening in the zebrafish.
    Bruni G; Lakhani P; Kokel D
    Front Pharmacol; 2014; 5():153. PubMed ID: 25104936
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The developing zebrafish (Danio rerio): a vertebrate model for high-throughput screening of chemical libraries.
    Lessman CA
    Birth Defects Res C Embryo Today; 2011 Sep; 93(3):268-80. PubMed ID: 21932435
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid behavior-based identification of neuroactive small molecules in the zebrafish.
    Kokel D; Bryan J; Laggner C; White R; Cheung CY; Mateus R; Healey D; Kim S; Werdich AA; Haggarty SJ; Macrae CA; Shoichet B; Peterson RT
    Nat Chem Biol; 2010 Mar; 6(3):231-237. PubMed ID: 20081854
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The zebrafish: a powerful platform for in vivo, HTS drug discovery.
    Delvecchio C; Tiefenbach J; Krause HM
    Assay Drug Dev Technol; 2011 Aug; 9(4):354-61. PubMed ID: 21309713
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Towards High-Throughput Chemobehavioural Phenomics in Neuropsychiatric Drug Discovery.
    Henry J; Wlodkowic D
    Mar Drugs; 2019 Jun; 17(6):. PubMed ID: 31174272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High-throughput animal tracking in chemobehavioral phenotyping: Current limitations and future perspectives.
    Henry J; Wlodkowic D
    Behav Processes; 2020 Nov; 180():104226. PubMed ID: 32846185
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Zebrafish models for translational neuroscience research: from tank to bedside.
    Stewart AM; Braubach O; Spitsbergen J; Gerlai R; Kalueff AV
    Trends Neurosci; 2014 May; 37(5):264-78. PubMed ID: 24726051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review.
    Fontana BD; Mezzomo NJ; Kalueff AV; Rosemberg DB
    Exp Neurol; 2018 Jan; 299(Pt A):157-171. PubMed ID: 28987462
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Anxiogenic-like effects of chronic nicotine exposure in zebrafish.
    Stewart AM; Grossman L; Collier AD; Echevarria DJ; Kalueff AV
    Pharmacol Biochem Behav; 2015 Dec; 139 Pt B():112-20. PubMed ID: 25643654
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding taurine CNS activity using alternative zebrafish models.
    Mezzomo NJ; Fontana BD; Kalueff AV; Barcellos LJG; Rosemberg DB
    Neurosci Biobehav Rev; 2018 Jul; 90():471-485. PubMed ID: 29747866
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding taurine CNS activity using alternative zebrafish models.
    Mezzomo NJ; Fontana BD; Kalueff AV; Barcellos LJG; Rosemberg DB
    Neurosci Biobehav Rev; 2017 Dec; 83():525-539. PubMed ID: 28916270
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Artificial intelligence-driven phenotyping of zebrafish psychoactive drug responses.
    Bozhko DV; Myrov VO; Kolchanova SM; Polovian AI; Galumov GK; Demin KA; Zabegalov KN; Strekalova T; de Abreu MS; Petersen EV; Kalueff AV
    Prog Neuropsychopharmacol Biol Psychiatry; 2022 Jan; 112():110405. PubMed ID: 34320403
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Zebrafish models of major depressive disorders.
    Fonseka TM; Wen XY; Foster JA; Kennedy SH
    J Neurosci Res; 2016 Jan; 94(1):3-14. PubMed ID: 26452974
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zebrafish models in neuropsychopharmacology and CNS drug discovery.
    Khan KM; Collier AD; Meshalkina DA; Kysil EV; Khatsko SL; Kolesnikova T; Morzherin YY; Warnick JE; Kalueff AV; Echevarria DJ
    Br J Pharmacol; 2017 Jul; 174(13):1925-1944. PubMed ID: 28217866
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Advances in zebrafish high content and high throughput technologies.
    Miscevic F; Rotstein O; Wen XY
    Comb Chem High Throughput Screen; 2012 Aug; 15(7):515-21. PubMed ID: 22497524
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research.
    Kalueff AV; Echevarria DJ; Homechaudhuri S; Stewart AM; Collier AD; Kaluyeva AA; Li S; Liu Y; Chen P; Wang J; Yang L; Mitra A; Pal S; Chaudhuri A; Roy A; Biswas M; Roy D; Podder A; Poudel MK; Katare DP; Mani RJ; Kyzar EJ; Gaikwad S; Nguyen M; Song C;
    Aquat Toxicol; 2016 Jan; 170():297-309. PubMed ID: 26372090
    [TBL] [Abstract][Full Text] [Related]  

  • 20. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.
    White DT; Eroglu AU; Wang G; Zhang L; Sengupta S; Ding D; Rajpurohit SK; Walker SL; Ji H; Qian J; Mumm JS
    Nat Protoc; 2016 Dec; 11(12):2432-2453. PubMed ID: 27831568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.