BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

97 related articles for article (PubMed ID: 25729402)

  • 21. Gene of the month:
    Rose AM; Luo R; Radia UK; Bhattacharya SS
    J Clin Pathol; 2017 Sep; 70(9):729-732. PubMed ID: 28663330
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mutations in the pre-mRNA splicing gene, PRPF31, in Japanese families with autosomal dominant retinitis pigmentosa.
    Sato H; Wada Y; Itabashi T; Nakamura M; Kawamura M; Tamai M
    Am J Ophthalmol; 2005 Sep; 140(3):537-40. PubMed ID: 16139010
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Time Course of Disease Progression of PRPF31-mediated Retinitis Pigmentosa.
    Kiser K; Webb-Jones KD; Bowne SJ; Sullivan LS; Daiger SP; Birch DG
    Am J Ophthalmol; 2019 Apr; 200():76-84. PubMed ID: 30582903
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Generation and characterization of the human iPSC line CABi001-A from a patient with retinitis pigmentosa caused by a novel mutation in PRPF31 gene.
    de la Cerda B; Díez-Lloret A; Ponte B; Vallés-Saiz L; Calado SM; Rodríguez-Bocanegra E; Garcia-Delgado AB; Moya-Molina M; Bhattacharya SS; Díaz-Corrales FJ
    Stem Cell Res; 2019 Apr; 36():101426. PubMed ID: 30921587
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Long-term clinical course of 2 Japanese patients with PRPF31-related retinitis pigmentosa.
    Kurata K; Hosono K; Hotta Y
    Jpn J Ophthalmol; 2018 Mar; 62(2):186-193. PubMed ID: 29305715
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A novel mutation in
    Zheng Y; Wang HL; Li JK; Xu L; Tellier L; Li XL; Huang XY; Li W; Niu TT; Yang HM; Zhang JG; Liu DN
    Int J Ophthalmol; 2018; 11(1):31-35. PubMed ID: 29375987
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Disease mechanism for retinitis pigmentosa (RP11) caused by mutations in the splicing factor gene PRPF31.
    Deery EC; Vithana EN; Newbold RJ; Gallon VA; Bhattacharya SS; Warren MJ; Hunt DM; Wilkie SE
    Hum Mol Genet; 2002 Dec; 11(25):3209-19. PubMed ID: 12444105
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Systemic splicing factor deficiency causes tissue-specific defects: a zebrafish model for retinitis pigmentosa.
    Linder B; Dill H; Hirmer A; Brocher J; Lee GP; Mathavan S; Bolz HJ; Winkler C; Laggerbauer B; Fischer U
    Hum Mol Genet; 2011 Jan; 20(2):368-77. PubMed ID: 21051334
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Identification and functional characterization of a novel splicing mutation in RP gene PRPF31.
    Liu JY; Dai X; Sheng J; Cui X; Wang X; Jiang X; Tu X; Tang Z; Bai Y; Liu M; Wang QK
    Biochem Biophys Res Commun; 2008 Mar; 367(2):420-6. PubMed ID: 18177735
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A Combined
    Wheway G; Nazlamova L; Meshad N; Hunt S; Jackson N; Churchill A
    Front Genet; 2019; 10():248. PubMed ID: 30967900
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Targeted Next Generation Sequencing Revealed Novel PRPF31 Mutations in Autosomal Dominant Retinitis Pigmentosa.
    Xie D; Peng K; Yi Q; Liu W; Yang Y; Sun K; Zhu X; Lu F
    Genet Test Mol Biomarkers; 2018 Jul; 22(7):425-432. PubMed ID: 29957067
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Apoptosis promoted by up-regulation of TFPT (TCF3 fusion partner) appears p53 independent, cell type restricted and cell density influenced.
    Franchini C; Fontana F; Minuzzo M; Babbio F; Privitera E
    Apoptosis; 2006 Dec; 11(12):2217-24. PubMed ID: 17041757
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Polymorphic core promoter GA-repeats alter gene expression of the early embryonic developmental genes.
    Valipour E; Kowsari A; Bayat H; Banan M; Kazeminasab S; Mohammadparast S; Ohadi M
    Gene; 2013 Dec; 531(2):175-9. PubMed ID: 24055488
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deciphering the contribution of known cis-elements in the mouse cone arrestin gene to its cone-specific expression.
    Pickrell SW; Zhu X; Wang X; Craft CM
    Invest Ophthalmol Vis Sci; 2004 Nov; 45(11):3877-84. PubMed ID: 15505032
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Control of human gene expression: High abundance of divergent transcription in genes containing both INR and BRE elements in the core promoter.
    Brown JC
    PLoS One; 2018; 13(8):e0202927. PubMed ID: 30138429
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evolutionary trend of exceptionally long human core promoter short tandem repeats.
    Ohadi M; Mohammadparast S; Darvish H
    Gene; 2012 Oct; 507(1):61-7. PubMed ID: 22796130
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Tyrosine hydroxylase gene regulation in human neuronal progenitor cells does not depend on Nurr1 as in the murine and rat systems.
    Jin H; Romano G; Marshall C; Donaldson AE; Suon S; Iacovitti L
    J Cell Physiol; 2006 Apr; 207(1):49-57. PubMed ID: 16252282
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Genotype and Phenotype Studies in Autosomal Dominant Retinitis Pigmentosa (adRP) of the French Canadian Founder Population.
    Coussa RG; Chakarova C; Ajlan R; Taha M; Kavalec C; Gomolin J; Khan A; Lopez I; Ren H; Waseem N; Kamenarova K; Bhattacharya SS; Koenekoop RK
    Invest Ophthalmol Vis Sci; 2015 Dec; 56(13):8297-305. PubMed ID: 26720483
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Core promoter analysis of porcine Six1 gene and its regulation of the promoter activity by CpG methylation.
    Wu W; Ren Z; Liu H; Wang L; Huang R; Chen J; Zhang L; Li P; Xiong Y
    Gene; 2013 Oct; 529(2):238-44. PubMed ID: 23954877
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Prevalence of the initiator over the TATA box in human and yeast genes and identification of DNA motifs enriched in human TATA-less core promoters.
    Yang C; Bolotin E; Jiang T; Sladek FM; Martinez E
    Gene; 2007 Mar; 389(1):52-65. PubMed ID: 17123746
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.